FONDO COMPLEMENTARE AL PNRR (PNC) PROGRAMMA "SICURO, VERDE E SOLIDALE: RIQUALIFICAZIONE DELL'EDILIZIA RESIDENIALE PUBBLICA"

CUP: B61B21006280001 / CIG: 926110057C

PROGETTO DEFINITIVO/ESECUTIVO

accorpate in unico livello (art. 23 co.4 D.lgs. 50/2016)

COMUNE DI NAPOLI

RESPONSABILE DEL PROCEDIMENTO Arch. Concetta Montella

DEC/DIRIGENTE Arch. Paola Cerotto MANDATARIA

RESP. INTEGRAZIONE PRESTAZIONI SPECIALISTICHE
Arch. Francesco Fucelli
PROGETTAZIONE ARCHITETTONICA
Arch. Francesco Fucelli / Arch. Giulio Rosi (Responsabile)

team Geom. Stefano Adriani
Ing. Arch. Alessandro Rossetti / Ing. Andrea Gazzella
///DAGINI E PROGETTAZIONE STRUTTURALE

Ing. Vincenzo Pujia (Responsabile)
team Ing. Chiara Adriani (Giovane professionista)
PROG. IMP. MECCANICI ED EFFICIENTAMENTO ENERGETICO
Ing. Fabrizio Tarducci (Responsabile)
PROG. IMP. ELETTRICI ED EFFICIENTAMENTO ENERGETICO
Ing. Flavio Passeri (Responsabile)
PROGETTAZIONE ANTINCENDIO E ACUSTICA

Ing. Catiuscia Maiggi (Responsabile)
COORDINAMENTO SICUREZZA IN FASE DI PROGETTAZIONE
Geom. Stefano Adriani (Responsabile)
CAPITOLATI E COMPUTI E CONS. OPERE ATTIVITA' DI RILIEVO
Arch. Sergio Tucci

Arch. Valentina Giannantoni (Responsabile)
GEOLOGIA Geol. Roberto Raspa
AGRONOMO Agr. Giovanni Ferrarese

FRANCESCO PUCELLAND

PROVINCIA DI PERIORI

ARCHITETTURA INGENERIA INTERNATA
VIA Pievaiola 15 / 06128 Perugi
T + 3 9 0 7 5 5 0 1 2 0 1
www.sasher.eu. infonsashen.in

Azienda certificata con Sistema di Gestione ONIEN ISO 3001-2015 - UNIEN ISO 14 0 1 1 2 0 1 1 2 0 1 1 1 2 0 1 1 1 2 0 1 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0

MANDANTE

dodi

PROG. ENERGETICO/AMBIENTALE
Arch. Egizia Gasparini (Responsabile)
PROG. PAESAGGISTICO
Arch. Valentina Dallaturca (Responsabile)
team Arch. Gabriella Innocenti
CRITERI AMBIENTALI MINIMI
Arch. Egizia Gasparini (Responsabile)

AGRONOMO Agr. Ettore Zauli

PROGETTAZIONE BIM

MANDANTE

PROGETTAZIONE ARCHITETTONICA
Arch. Giovanna Signorini
PROG. IMP. ELETTRICI ED EFFICIENTAMENTO ENERGETICO E
ANTINICENDIO
Ing. Gianni Drisaldi
INDAGINI E PROGETTAZIONE STRUTTURALE
Ing. Roberto Rampagni
PROG. IMP. MECCANICI ED EFFICIENTAMENTO ENERGETICO
Ing. Mario Lucarelli
COORDINAMENTO SICUREZZA IN FASE DI PROGETTAZIONE

COMMESSA

Via Luigi Catanelli 60 / 06135 Perugia T+39 075 5997792 www.exidengineering.com info@exidengineering.com

MANDANTE

Via Crocella Santa n.32 San Felice a Cancello (CE). Sede operativa: Via Duomo, 14 - Npoli T + 3 9 0 8 1 5 6 3 1 9 6 0 w w w a r - p r o j e c t . i t studio@arproject.design

RESP. DIREZIONE LAVORI E CSE Arch. Salvatore Solaro

23007 CNAP.005-01-01.22.DEF

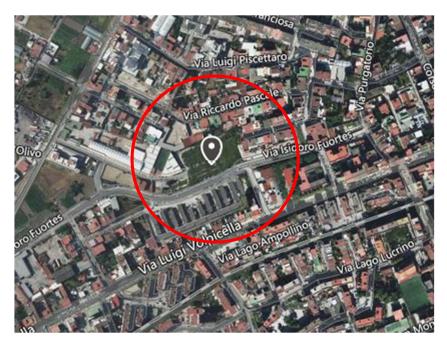
Ing. Danilo Lucarelli

RELAZIONE SULLE STRUTTURE

	LOTTO	CATEGORIA	SOTTO CATEGORIA	PROG.	TIPO	PROG.	REV.
D.	Z 0 1.	STR.	ST.	01.	RE	01_	00

SCALA

03													
02													
01													
00													
REV.	EMESSO PER CONSEGNA AGLI ENTI)	RED.	VPU	COMP.	CONTR.	VPU	CHECK.	APPR.	FFU	APPR'D	DATA	MAGGIO 2023 DATE


Filename: CNAP005-Cartigli.dwg

TITOLO

0. 1 Finalità del documento

Il presente documento contiene la descrizione degli interventi strutturali relativi all'intervento di Nuovo Ecoquartiere a Ponticelli sito nel Comune di Napoli provincia di Napoli Via Isidoro Fuortes di proprietà del Comune di Napoli.

Figura 1.1: Localizzazione dell'opera in oggetto

Regione:	Campania	Campania				
Provincia:	Napoli					
Comune:	Napoli					
Indirizzo:	Via Isidoro Fu	iortes				
Committente:	Comune di Na	apoli				
Lavoro:	Nuovo Ecoqua	Nuovo Ecoquartiere a Ponticelli				
Foglio:	- Particella: -					
Latitudine (WGS84)	40.85138	Latitudine (ED50)	40.85238			
Longitudine (WGS84)	14.32810	Longitudine (ED50)	14.32897			
Zona sismica	2					
Vita nominale dell'opera:	$V_N \geq 50 \text{ anni}$					
Tipo di costruzione	2					
Classe d'uso	II					
Data di prima stesura:	15/05/2023					
Aggiornamento nº 1			_			

INDICE

0. 1	Fina	alità del documento	2
A.1.	REI	AZIONE TECNICA ILLUSTRATIVA	1
A.1 -	1.	Descrizione dell'opera	1
A.1 -	2.	Vita nominale, classe d'uso e periodo di riferimento	<i>6</i>
A.1 -	4.	Sicurezza e prestazioni attese	7
A.1 -	5.	Criteri e metodi di analisi e di progettazione	
A.1 -	6.	Rispetto dei requisiti nei confronti degli stati limite	8
A.1 -	7.	Verifiche di rigidezza: Deformazioni relative allo Stato Limite SLD	9
A.1 -	8.	RELAZIONE SULLA MODELLAZIONE SISMICA: pericolosità sismica di base del sito	10
Α.:	1 - 8.	1 CLASSE D'USO E PERIODO DI RIFERIMENTO	10
Α.:	1 - 8.	Periodo di riferimento per l'azione sismica (§ 2.4.3 - D.M. 17.01.2018)	1
Α.:	1 - 8.3	Pericolosità sismica: mappatura dell'Umbria	1
Α.:	1 - 8.4		
Α.:	1 - 8.	Parametri di pericolosità sismica della strategia di progettazione	1
A.2.	REI	AZIONE SUI MATERIALI IMPIEGATI	
A.2 -		Premessa	
A.2 -	2.	Materiali	
A.2	2 - 2.:	1 CALCESTRUZZO	
A.2	2 - 2.:	2 ACCIAIO PER CEMENTO ARMATO	2
A.2	2 - 2.:		
A.2	2 - 2.4	4 ACCIAIO PER CARPENTERIA METALLICA	2
A.2	2 - 2.		
A.2	2 - 2.0		
A.2	2 - 2.		
A.2 -	3.	Specifiche classe di esecuzione (UNI EN1090-2:2018)	
A.2 -	4.	Determinazione del grado di resilienza (UNI EN 1993-1-10:2005)	
A.2 -	5.	Trattamenti di preparazione e protezione superficiali dell'acciaio	
A.2 -	6.	MATERIALI E PRODOTTI PER USO STRUTTURALE	3
A.2	2 - 6.:	,	3
A.2	2 - 6.2		
A.2	2 - 6.3		
A.3.	REI	AZIONE DI CALCOLO DELLE STRUTTURE	
A.3 -		Premessa	
A.3 -	2.	Normativa tecnica di riferimento	
A.3 -		Metodologie di calcolo, tipo di analisi e strumenti utilizzati.	
A.3 -		Inquadramento geologico, morfologico ed idrogeologico del sito oggetto di intervento	
	3 - 4.		
A.3 -		Progettazione per azioni sismiche cap. 7 DM 17-01-2018	
	3 - 5.		
	3 - 5.		
A.3 -		Prestazioni di progetto, classe della struttura, vita utile e procedure di qualità	
A.3 -		Criteri e metodi di analisi e progettazione strutturale	
,		and the second of the second o	

A.3 - 8. Criteri per la misura della sicurezza: Metodo di calcolo agli stati limite	17
A.3 - 9. Schematizzazione delle azioni, condizioni e combinazioni di carico	17
A.3 - 10. Combinazioni di carico statiche	18
A.3 - 11. Combinazioni di carico sismiche	18
A.3 - 12. Le azioni applicate alla struttura	19
A.3 - 12.1 Peso proprio delle strutture	19
A.3 - 12.2 Azione della neve	20
A.3 - 12.3 Azione del vento edifici con copertura piana	21
A.3 - 12.4 Azione del vento tettoie a falda singola	25
A.3 - 12.5 Carichi da tamponature	29
A.3 - 12.6 Carichi permanenti ed accidentali sui solai	34
A.3 - 12.7 Spinte dei rinterri sulle pareti perimetrali	42
A.3 - 12.8 Azioni eccezionali	43
A.3 - 12.9 Condizioni di carico	45
A.3 - 12.10 Combinazioni di carico statiche e sismiche	45
A.3 - 13. Modellazione della struttura	48
A.3 - 14. Verifiche statiche dei solai tipo predalles	52
A.3 - 14.1 Verifica solai a quota Q.R0,30 m	52
A.3 - 15. Verifiche statiche dei solai tipo Plastbau Metal	73
A.3 - 15.1 Verifica solai di piano e di copertura	73
A.3 - 16. Verifica balconi	104
A.3 - 17. Verifiche ancoraggio delle tamponature alle strutture principali	110
A.3 - 18. Verifica edificio: E1_C	111
A.3 - 18.1 Dati di input e risultati dell'elaborazione per lo SLV	112
A.3 - 18.2 Combinazioni di carico	114
A.3 - 18.3 Diagrammi delle sollecitazioni	117
A.3 - 18.4 Modi propri di vibrazione	135
A.3 - 18.5 Inviluppi dinamici in SLV	144
A.3 - 18.6 Controllo deformabilità torsionale	146
A.3 - 18.7 Analisi del secondo ordine	148
A.3 - 18.8 Controllo azioni taglianti	151
A.3 - 18.9 Verifica elementi in c.a.	152
A.3 - 18.10 Verifica elementi acciaio: telaio supporto impianti copertura	153
A.3 - 18.11 Valutazione spostamenti interpiano allo SLD	156
A.3 - 19. Verifica copertura spazio polifunzionale	159
A.3 - 19.1 Dati di input e risultati dell'elaborazione per lo SLV	160
A.3 - 19.2 Combinazioni di carico	161
A.3 - 19.3 Diagrammi delle sollecitazioni	
A.3 - 19.1 Modi propri di vibrazione	163
A.3 - 19.2 Pressioni in fondazione	
A.3 - 19.3 Verifica elementi acciaio: copertura spazio polivalente	

A.1. - RELAZIONE TECNICA ILLUSTRATIVA

OGGETTO: Nuovo Ecoquartiere a Ponticelli

COMMITTENTE: Comune di Napoli

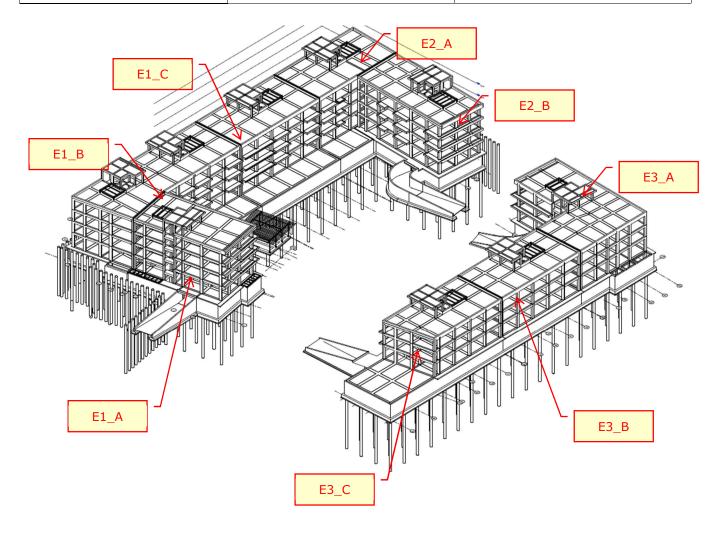
COMUNE: Napoli

PROVINCIA: Napoli

LOCALITA': Via Isidoro Fuortes

DATA: maggio 2023

Revisione 00


A.1. RELAZIONE TECNICA ILLUSTRATIVA

A.1 - 1. Descrizione dell'opera

La presente relazione si riferisce ai lavori di Realizzazione del Nuovo Ecoquartiere a Ponticelli con edifici multipiano aventi principalmente destinazione residenziale, con alloggi destinati al Social Housing e distribuiti tra i vari corpi di fabbrica, con il primo piano interrato adibito a parcheggi, box auto e locali destinati a fondo, a servizio delle abitazioni sito nel Comune di Napoli provincia di Napoli Via Isidoro Fuortes di proprietà del Comune di Napoli.

Descrizione generale d	lell'opera							
Descizione	principalmente destina distribuiti tra i vari cor	alizzazione del Nuovo Ecoquartiere a Ponticelli con edifici multipiano aventi ncipalmente destinazione residenziale, con alloggi destinati al Social Housing e tribuiti tra i vari corpi di fabbrica, con il primo piano interrato adibito a parcheggi, c auto e locali destinati a fondo, a servizio delle abitazioni						
Proprietà	Comune di Napoli							
	Comune	Napoli			Provincia	Napoli		
	Località	Via Isidoro Fuortes						
Ubicazione	Altitudine sito s.l.m.	27 [m]						
Obicazione	Zona sismica	2						
	Latitudine (WGS84)	40.85138 [°] Lat		Latitu	dine (ED50)	40.85238	[°]	
	Longitudine (WGS84)	14.3281	0 [°]	Longi	tudine (ED50)	14.32897	[°]	
Dati catastali	foglio n° -		particella	n°	-			
Tipologia edilizia	Nuova Costruzione							
Sistema costruttivo	Calcestruzzo armato							
Tipo di intervento	Nuova realizzazione							
Vita nominale dell'opera	V _N ≥ 50 anni							
Classe d'uso	II							
Numero di piani	Fuori terra : 4			Interr	ati :	1		
Numero vani scale	1			Nume	ero vani ascenso	ore: 1		

Principali caratteristiche della	struttura						
Comportamento strutturale	non-dissipativo	non-dissipativo					
Classe di duttilità	-						
Tipologia strutturale	strutture a telaio						
Tipo di analisi sismica	Analisi lineare dinamica (Ar	alisi moda	ale con	spettro di rispost	a)		
Metodo di verifica	Stati limite	Normativ	a: D	.M. 17-01-2018			
Componente verticale del sisma	NO						
Travi ricalate o in spessore	SI						
Pilastri	SI						
Pilastri in falso	NO						
Pareti	NO						
Tipo di fondazione	fondazione in c.a. di tipo in	diretto a p	olatea d	continua su pali			
Tipologia solai di piano	solaio alleggerito con casse soletta superiore	ri in polis	tirene	espanso (EPS), tra	avetti in c.a. e		
Comportamento solai di piano	⊠ rigido			deformabile			
Tipologia solaio di copertura	solaio alleggerito con casse soletta superiore	ri in polis	tirene	espanso (EPS), tra	avetti in c.a. e		
Comportamento solai di copertura	⊠ rigido			deformabile			
Terreno	Categoria sottosuolo : B		Catego	oria topografica :	T1		

Il progetto prevede la realizzazione di edifici multipiano aventi principalmente destinazione residenziale, con alloggi destinati al Social Housing e distribuiti tra i vari corpi di fabbrica, con il primo piano interrato adibito a parcheggi, box auto e locali destinati a fondo, a servizio delle abitazioni. L'intera superficie dell'area comprende anche una struttura metallica ad un solo piano fuori terra, ubicata in corrispondenza del piano terra e destinata a spazio polifunzionale per possibili eventi

Al piano terra degli edifici, saranno ubicate le attività terziarie di servizio alle residenze.

Gli edifici sono staticamente indipendenti, mediante la realizzazione di opportuni giunti sismici di separazione e sono realizzati in calcestruzzo armato ordinario gettato in opera.

L'edificio si sviluppa su più quote in altezza, presentando le fondazioni su un solo livello. Il solaio del primo piano presenta una altezza interpiano maggiore rispetto agli altri livelli per garantire un'adeguata altezza netta utile all'interno dei locali commerciali.

La struttura portante dell'edificio, è costituita da un telaio spaziale con travi, pilastri e pareti in cemento armato in opera. In corrispondenza del livello interrato (-1) sono presenti anche, perimetralmente, pareti in c.a. controterra indipendenti dai pilastri mediante la realizzazione di opportuni giunti.

I solai del piano terra, verso i locali interrati, sono semiprefabbricati, del tipo a predalles, alleggeriti con blocchi di polistirolo, costituiti da una lastra inferiore prefabbricata, irrigidita da tralicci metallici e completati con getti in opera per la formazione dei travetti e della soprastante soletta in c.a.

Per quanto riguarda i solai a predalles, il solaio di copertura del piano interrato ovvero di calpestio dei negozi del piano terra, ha uno spessore complessivo di 45 cm, è costituito da una lastra inferiore di 4 cm e da una soletta superiore di 6 cm (h=5+34+6 cm).

I solai predalle saranno dotati di sfiati di sicurezza che assolvono alla funzione di evitare il fenomeno di innalzamento della pressone in caso di incendio, consentendo la fuoriuscita dell'aria. Tali elementi sono realizzati in materiale plastico con punto di fusione prefissato, che collega l'interno con l'esterno solo quando è necessario attraverso il dispositivo stesso, che si apre in caso di incendio.

Tutti gli impalcati ai piani superiori e la copertura del locale tecnico in sommità sono costituiti da solai in polistirene espanso sinterizzato (EPS) tipo Plastbau ®Metal di altezza totale 40 cm (h=5+30+5cm). I solai sono formati da un pannello-cassero autoportante a geometria variabile e a coibentazione termica incorporata, per la formazione dei solai da armare e gettare in opera. I pannelli saranno predisposti all'intradosso con lamierini incorporati ad interasse cm 30 per l'avvitatura del controsoffitto in aderenza o sospeso.

Gli elementi, di larghezza 60 cm, con battentatura maschio e femmina sui bordi, saranno posti in opera perfettamente accostati su rompitratta d'armatura provvisoria alla distanza opportuna ed integrati con getto in opera di calcestruzzo a formare i travetti e la soletta dello spessore: S = cm 5 armata con rete elettrosaldata maglia cm. 20×20 , filo 6.

Gli sbalzi dei balconi sono realizzati con solette in calcestruzzo in getto pieno.

I pilastri che si elevano fuori terra, di sezione rettangolare, mantengono delle dimensioni costanti in corrispondenza dei piani in elevato, mentre si allargano, al livello interrato, di 5 cm su ogni lato, sia per ragioni statiche che per incrementare il copriferro al fine di garantire la resistenza antincendio (R60). I pilastri dei piani in elevato, sono di sezione 35x75 cm mentre i

pilastri che si elevano per il solo livello interrato sono di sezione quadrata, di dimensione costante pari a 45x45 cm.

Le travi in c.a., ordite nelle due direzioni principali, nei livelli fuori terra sono emergenti intradossate in corrispondenza del perimetro, con sezione 35x55 cm, mentre nelle zone interne sono previste travi a spessore di solaio con sezione 70x40 cm. Le travi del piano interrato sono a spessore di solaio con sezione 80x40 cm o emergenti intradossate, con sezione 45x65 cm e 35x65 cm. Il rispetto della resistenza al fuoco R60 per le travi del piano interrato, viene garantito da un copriferro nominale minimo di 4 cm all'intradosso. Le lastre prefabbricate dei solai fungono da casseforme per il getto delle travi a spessore. Nella modellazione, le travi dei livelli interrati, sono state schematizzate con altezze di 40 cm, invece di 45 cm, non potendo garantire le forze di scorrimento reciproche tra lastra prefabbricata e getto in c.a..

Le pareti in elevato del vano ascensore hanno spessori di 30 cm, che aumentano di 5 cm al piano interrato.

Le scale interne di collegamento dei piani sono costituite da solette in cls armato a formare le rampe e pianerottoli intermedi ed i gradini verranno realizzati mediante cls (gradini 'riportati'). Le rampe delle scale ed i relativi pianerottoli, sono realizzati con solette in c.a. di spessore 16 cm incastrate alle travi limitrofe.

Le tamponature perimetrali dei piani ad uso abitativo, sono realizzate in muratura in blocchi di laterizio forati, con isolamento esterno a cappotto, per uno spessore complessivo di 52 cm, mentre al piano terra, adibito a destinazione commerciale, sono costituite da vetrate. I divisori interni dei piani abitativi, sono realizzati con muratura in blocchi di laterizio forati di spessore 8 cm, rivestita con intonaco, mentre le tamponature di separazione delle unità immobiliari, sono sempre realizzate con muratura a "cassetta".

Inoltre, al fine di evitare collassi fragili e prematuri e la possibile espulsione sotto l'azione della forza sismica delle tamponature, queste saranno collegate alla struttura mediante l'inserimento di un traliccio metallico annegato nel letto di malta ogni due corsi (a distanza non superiore a 500 mm) e ancorato ai pilastri con fori resinati ø8 mm, come previsto al punto C.7.3.6.2 della Circolare n°7 del 21/01/2019 Istruzioni per l'applicazione delle NTC_2018.

Le fondazioni, calcolate in funzione dei carichi della sovrastruttura e della caratterizzazione del terreno riportata nella Relazione Geologica allegata, sono del tipo misto:

• fondazione in c.a. di tipo indiretto a platea continua su pali

Tale fondazione poggerà su un "magro di pulizia" dello spessore di circa 10cm.

La platea in calcestruzzo armato gettato in opera ha uno spessore di 80 cm e i pali sono del tipo trivellato con diametro 600 mm e lunghezza L=14,00 m.

In accordo al §6.4.3.3. del DM 17-01-2018 il soddisfacimento della condizione (6.2.1) Ed \leq Rd è garantito dalla sola struttura della platea di fondazione posta a contatto con il terreno mentre ai pali è assegnata la sola funzione di riduzione e regolazione degli spostamenti. In questo caso il dimensionamento dei pali deve garantire il soddisfacimento delle verifiche nei confronti degli stati limite ultimi (SLU) di tipo strutturale per tutti gli elementi della fondazione (struttura di collegamento e pali) e delle verifiche SLE secondo quanto riportato al paragrafo §6.4.3.4. del DM 17-01-2018.

L'analisi di interazione tra il terreno e la fondazione mista deve garantire che i valori degli spostamenti e delle distorsioni siano compatibili con i requisiti prestazionali della struttura in elevazione (§§ 2.2.2 e 2.6.2), nel rispetto della condizione $E_d \le C_d$ in cui E_d è il valore di progetto

dell'effetto delle azioni nelle combinazioni di carico per gli SLE e C_d è il prescritto valore limite dell'effetto delle azioni.

La copertura è costituita da un solaio piano con finitura a ghiaietto e presenza di pannelli fotovoltaici. In copertura, si prevede la realizzazione di una struttura metallica in acciaio per il supporto degli impianti.

Ai fini della definizione dell'azione sismica di progetto, si rende necessario valutare l'effetto della risposta sismica locale mediante l'individuazione di categorie di sottosuolo di riferimento. In base ai dati riportati nella relazione geologica il terreno di posa viene classificato come appartenente alla categoria **B**:

Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da

valori di velocità equivalente compresi tra 360 m/s e 800 m/s.

La categoria topografica assunta è del tipo **T1**: Superficie pianeggiante, pendii e rilievi isolati con inclinazione media $i <= 15^{\circ}$ a cui corrisponde un coefficiente $S_T = 1,00$.

Per la verifica delle fondazioni allo Stato Limite Ultimo è stato utilizzato **l'Approccio 2** così come definito al §6.4.2.1. del D.M. 17-01-2018.

E' stata impiegata una **ANALISI LINEARE DINAMICA MODALE CON SPETTRO DI RISPOSTA** conforme alla normativa vigente considerando tutti i modi di vibrare con massa partecipante superiore al 5% e comunque un numero di modi la cui massa partecipante totale sia superiore all'85%.

Per la verifica degli elementi strutturali si è adottato il **metodo degli stati limite** applicando quanto previsto al §7.4.4. del D.M. 17-01-2018.

A.1 - 2. Vita nominale, classe d'uso e periodo di riferimento

Per la progettazione strutturale si è fatto riferimento alle Norme Tecniche per le costruzioni di cui al D.M. 17.01.2018 classificando l'opera in oggetto come tipo di costruzione **2** (Costruzioni con livelli di prestazioni ordinari) e "**Costruzioni il cui uso preveda normali affoliamenti**" appartenente quindi alla classe **II** del § 2.4.2 ed ottenendo i seguenti parametri di riferimento:

CALCOLO DEL PERIODO DI RIFERIMENTO PER L'AZIONE SISMICA (§ 2.4.3)

Titolo: Nuovo Ecoquartiere a Ponticelli

Normativa: Norme tecniche per le costruzioni D.M. 17.01.2018

Tipo di costruzione: 2 Costruzioni con livelli di prestazioni ordinari

Vita nominale: $V_N = 50$ [anni]

Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente.

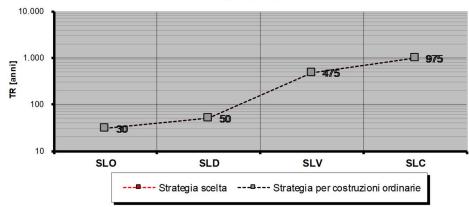
Classe d'uso:

II

Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non

provochi conseguenze rilevanti

Coefficiente: $C_U = 1,00$


Periodo di riferimento: $V_R = V_N \times C_U = 50$ [anni]

Periodi di ritorno per la definiz	Periodi di ritorno per la definizione dell'azione sismica					
Stati Limite	P _{VR}	T _R [anni]				
Stati limite di esercizio	SLO	81%	30			
Stati lifflite di esercizio	SLD	63%	50			
Stati limite ultimi	SLV	10%	475			
Stati iimite uiumi	SLC	5%	975			

$$T_{R} = -\frac{V_{R}}{\ln{(1 - P_{V_{R}})}}$$

 $30 \le T_R \le 2475$

Strate gia di progettazione

A.1 - 4. Sicurezza e prestazioni attese

La sicurezza e le prestazioni sono garantite verificando i seguenti stati limite, in funzione dell'utilizzo della struttura, della sua vita nominale e di quanto stabilito dalle norme; in particolare si verifica:

- la sicurezza nei riguardi degli stati limite ultimi (SLU e SLV) che possono provocare eccessive deformazioni permanenti, crolli parziali o globali, dissesti, che possono compromettere l'incolumita delle persone e/o la perdita di beni, provocare danni ambientali e sociali, mettere fuori servizio l' opera. Per le verifiche sono stati utilizzati i coefficienti parziali relativi alle azioni ed alle resistenze dei materiali in accordo a quando previsto dalle NTC2018 per i vari tipi di materiale. I valori utilizzati sono riportati nel seguito;
- la sicurezza nei riguardi degli stati limite di esercizio (SLE) che possono limitare nell'uso e nella durata l'utilizzo della struttura. In particolare, coerentemente alle norme tecniche, sono definiti i limiti riportati nel seguito;
- la sicurezza nei riguardi dello stato limite di operativita (SLO), causato da azioni sismiche;
- la sicurezza nei riguardi dello stato limite del danno (SLD) causato da azioni sismiche.

A.1 - 5.Criteri e metodi di analisi e di progettazione

Le analisi strutturali finalizzate alla definizione dei livelli di sicurezza e funzionalità prescritti sono condotte secondo il concetto di stato limite (SL) utilizzato congiuntamente al metodo del coefficiente parziale secondo quanto previsto al §2.3. del D.M. 17-01-2018. Nel metodo semiprobabilistico agli stati limite, la sicurezza strutturale deve essere verificata tramite il confronto tra la resistenza e l'effetto delle azioni.

La verifica della sicurezza nei riguardi degli stati limite ultimi di resistenza si effettua con il "metodo dei coefficienti parziali" di sicurezza espresso dalla equazione formale:

$$R_d \, \geq \, E_d$$

dove:

- R_d è la resistenza di progetto, valutata in base ai valori di progetto della resistenza dei materiali e ai valori nominali delle grandezze geometriche interessate;
- E_d è il valore di progetto dell'effetto delle azioni.

Secondo tale metodo si verifica che, in tutte le situazioni progettuali ritenute significative, gli SL non vengano raggiunti quando i valori di progetto delle azioni, delle proprietà del materiale, dei dati geometrici e delle resistenze vengono introdotti nei modelli progettuali.

I requisiti richiesti di resistenza, funzionalità, durabilità e robustezza si garantiscono verificando il rispetto degli stati limite ultimi e degli stati limite di esercizio della struttura, dei componenti strutturali e dei collegamenti.

A.1 - 6.Rispetto dei requisiti nei confronti degli stati limite

Per tutti gli elementi strutturali primari e secondari, gli elementi non strutturali e gli impianti si deve verificare che il valore di ciascuna domanda di progetto, definito dalla tabella 7.3.III per ciascuno degli stati limite richiesti, sia inferiore al corrispondente valore della capacità di progetto.

Tab. 7.3.III – Stati limite di elementi strutturali primari, elementi non strutturali e impianti

CU				CUII		CU III e IV			
STATI LIMITE		ST	ST	ST NS IM			NS	IM ^(*)	
SLE	SLO					RIG		FUN	
SLE	SLD	RIG	RIG			RES			
CIII	SLV	RES	RES	STA	STA	RES	STA	STA	
SLU	SLC		DUT(**)			DUT(**)			

^(*) Per le sole CU III e IV, nella categoria Impianti ricadono anche gli arredi fissi.

La tabella C7.3.I della Circolare n° 7 del 21/01/2019 fornisce per ciscuno stato limite e per ciascun tipo di elemento (strutturale, non strutturale o impianto), la descrizione delle prestazioni in termini di danno, capacità ultima (resistenza o duttilità) o funzionamento.

Tabella C7.3.1 - Stati Limite di elementi strutturali primari, elementi non strutturali e impianti: descrizione delle prestazioni e corrispondenti verificise

-					ST		NS	IM			Classe d'uso		
	MITE	Des	crizione della prestazione	RIG	RES	DUT (SPO)	STA	PUN	STA	r	П	III IV	
	SLO	NS ST	Limitazione del danno degli elementi non strutturali, o delle pareti per le costruzioni di muratura	§ 7.3.6.1								×	
SLE		IM	Punzionamento degli impianti					§ 7.3.6.3				×	
		ST	Controllo del danno degli elementi strutturali		§ 7.3.1					T			
ı	SLD	NS ST	Controllo del denno degli elementi non strutturali, o delle pareti per le costruzioni di muratura							×	×	Ī	
		ST	Livello di danno degli elementi strutturali coerente con il fattore di comportamento adottato, assenza di rotture fragili e meccanismi locali/globali instabili		§ 7.3.6.1					x	x	×	
SLU	SLV	NS	Assenza di crolli degli elementi non strutturali pericolosi per l'incolumità, pur in presenza di danni diffusi				§7.3.6.3				x	x	
		IM	Capacità ultima degli impianti e dei collegamenti						§ 7.3.6.3		×	×	
	SLC	ST	Margine di sicurezza sufficiente per azioni verticali ed esiguo per azioni orizzontali			§7.3.6.1 (DUT)					х	8.	
	SLC	ST	Capacità di spostamento dei dispositivi nelle costruzioni con isolamento sismico			§ 7.10.6.2.2 (SPO)					x	×	

^(**) Nei casi esplicitamente indicati dalle presenti norme.

A.1 - 7. Verifiche di rigidezza: Deformazioni relative allo Stato Limite SLD

In base a quanto prescritto dal §7.3.6.1 del DM 17-01-2018 la condizione in termini di rigidezza sulla struttura si ritiene soddisfatta qualora la conseguente deformazione degli elementi strutturali non produca sugli elementi non strutturali danni tali da rendere la costruzione temporaneamente inagibile.

Nel caso delle costruzioni civili e industriali, qualora la temporanea inagibilità sia dovuta a spostamenti di interpiano eccessivi, questa condizione si può ritenere soddisfatta quando gli spostamenti di interpiano ottenuti dall'analisi in presenza dell'azione sismica di progetto corrispondente allo SL e alla C_U considerati siano inferiori ai limiti indicati nel seguito.

Per le costruzioni ricadenti in classe d'uso I e II ci si riferisce allo SLD:

b) per tamponamenti progettati in modo da non subire danni a seguito di spostamenti di interpiano drp , per effetto della loro deformabilità intrinseca ovvero dei collegamenti alla struttura:

SLD: dr < 0.01 hSLO: dr < 0.0067 h

dove:

- dr è lo spostamento interpiano, ovvero la differenza tra gli spostamenti al solaio superiore ed inferiore,
- h è l'altezza del piano.

Per le Classi d'uso III e IV ci si riferisce allo SLO e gli spostamenti d'interpiano devono essere inferiori ai 2/3 dei limiti in precedenza indicati.

A.1 - 8.RELAZIONE SULLA MODELLAZIONE SISMICA: pericolosità sismica di base del sito

A.1 - 8.1 CLASSE D'USO E PERIODO DI RIFERIMENTO

A.1 - 8.1.1. Vita nominale

La vita nominale (V_N) di un'opera strutturale è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve poter essere usata per lo scopo al quale è destinata. La Norma definisce la vita nominale a secondo del tipo di costruzione come indicato nella Tabella 2.4.I.:

Tab. 2.4.I – Valori minimi della Vita nominale V_N di progetto per i diversi tipi di costruzioni

	TIPI DI COSTRUZIONI	Valori minimi di V _N (anni)
1	Costruzioni temporanee e provvisorie	10
2	Costruzioni con livelli di prestazioni ordinari	50
3	Costruzioni con livelli di prestazioni elevati	100

Per la tipologia di opera in esame si assume:

Tipo:	2	Costruzioni con livelli di prestazioni ordinari

a cui corrisponde una vita nominale $V_N \ge 50$ anni.

A.1 - 8.1.2. Classe d'uso della costruzione (§ 2.4.2 - D.M. 17.01.2018)

In presenza di azioni sismiche, con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, le costruzioni sono suddivise in classi d'uso.

Per la tipologia di opera in esame si assume una classe d'uso:

Classe: II Costi	uzioni il cui uso preveda normali affollamenti
------------------	--

Il valore del coefficiente d'uso C_U è definito, al variare della classe d'uso, come riportato in Tab. 2.4.II.

Tab. 2.4.II - Valori del coefficiente d'uso Cu

CLASSE D'USO	I	п	Ш	IV
COEFFICIENTE C _U	0,7	1,0	1,5	2,0

Alla classe d'uso scelta corrisponde quindi un coefficiente d'uso $C_U=1,00$.

A.1 - 8.2 Periodo di riferimento per l'azione sismica (§ 2.4.3 - D.M. 17.01.2018)

Le azioni sismiche agenti sulla costruzione vengono valutate in relazione ad un periodo di riferimento V_R che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale V_N per il coefficiente d'uso C_U :

$$V_R = V_N \times C_U$$

Stante la vita nominale V_N e classe d'uso C_U prescelta, si assume il seguente periodo di riferimento V_R dell'azione sismica:

$$V_R = V_N \times C_U = 50 \times 1,00 = 50$$
 anni

Normativa: Norme tecniche per le costruzioni D.M. 17.01.2018

Tipo di costruzione: 2 Costruzioni con livelli di prestazioni ordinari

Vita nominale: $V_N = 50$ [anni]

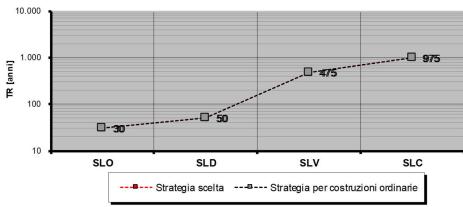
Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente.

Classe d'uso:

II

Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti

Coefficiente: $C_U = 1,00$

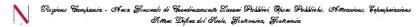

Periodo di riferimento: $V_R = V_N \times C_U = 50$ [anni]

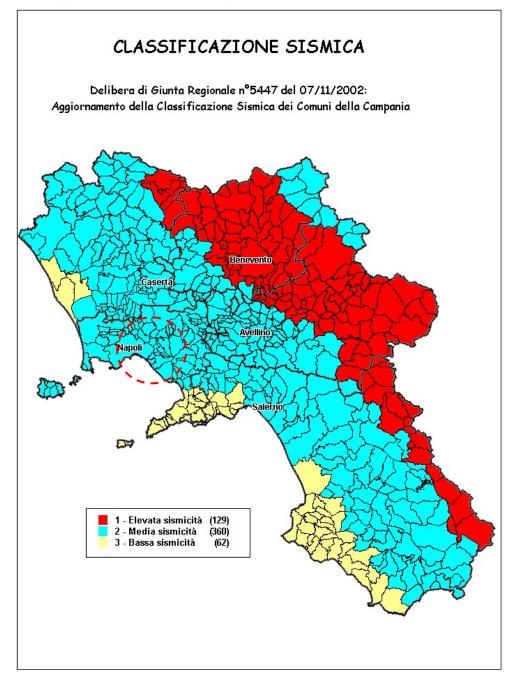
Periodi di ritorno per la definizione dell'azione sismica			smica
Stati Limite		P _{VR}	T _R [anni]
Stati limite di esercizio	SLO	81%	30
Stati lifflite di esercizio	SLD	63%	50
Stati limite ultimi	SLV	10%	475
Stati lillile ulullil	SLC	5%	975

$$T_{R} = -\frac{V_{R}}{\ln\left(1 - P_{V_{R}}\right)}$$

$$30 \le T_R \le 2475$$

Strate gia di progettazione

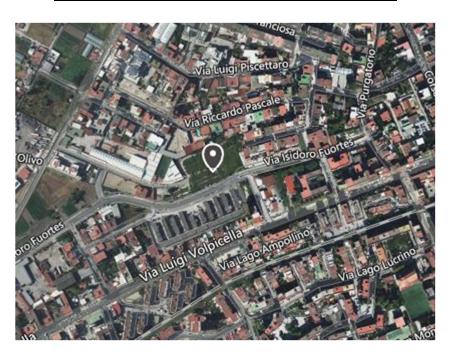



Zona sismica 4:

NO

A.1 - 8.3 Pericolosità sismica: mappatura dell'Umbria

Il Comune di Napoli ricade in zona sismica **2** (coerentemente con quanto indicato nella Delibera della Giunta Regionale N. 5447 del 07/11/2002.



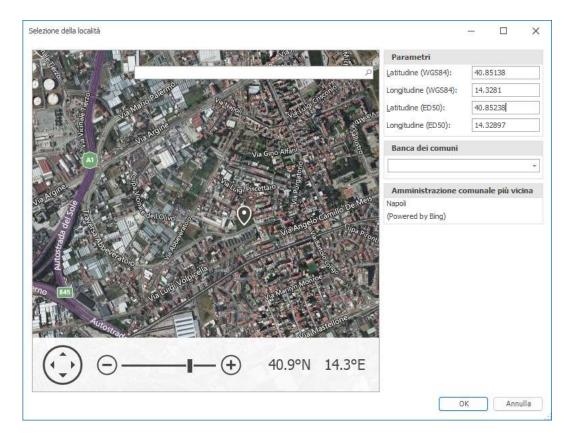
A.1 - 8.4 Parametri di pericolosità sismica del sito di costruzione

Si riportano, di seguito, i parametri di pericolosità sismica della zona entro cui è prevista l'edificazione delle strutture, oggetto di studio della presente relazione. Le strutture sono ubicate nel Comune di Napoli, Provincia di Napoli, loc. Via Isidoro Fuortes e nel punto di coordinate con

	WGS84	ED50
Latitudine:	40.85138 °	40.85238 °
Longitudine:	14.32810 °	14.32897 °

Valori dei parametri a_g , F_o , T_C^* per i periodi di ritorno T_R associati a ciascuno SL

SLATO LIMITE	T _R [anni]	a _g [9]	F ₀ [-]	T _C [s]
SLO	30	0,046	2,336	0,285
SLD	50	0,061	2,336	0,312
SLV	475	0,169	2,380	0,341
SLC	975	0,214	2,452	0,344


A.1 - 8.5 Parametri di pericolosità sismica della strategia di progettazione

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione. La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa a_g in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale, nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente S_e (T) , con riferimento a prefissate probabilità di eccedenza P_{VR} , nel periodo di riferimento V_R . Le forme spettrali sono definite, per ciascuna delle probabilità di superamento nel periodo di riferimento P_{VR} , a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

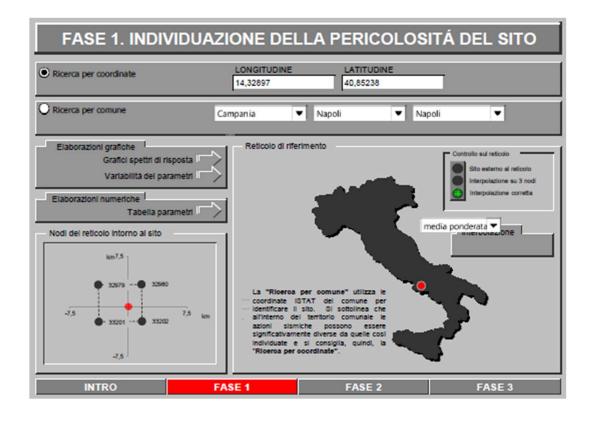
- ag accelerazione orizzontale massima al sito;
- F_o valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale.
- T*_C periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

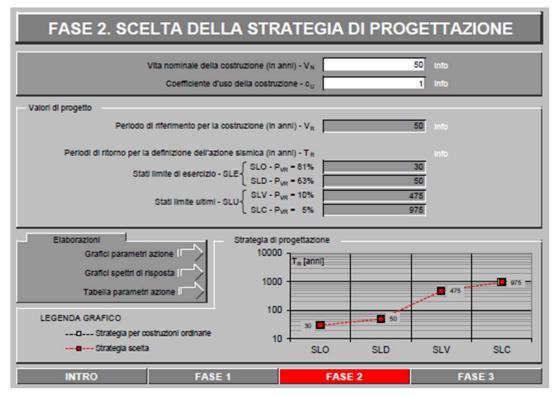
Per il sito in esame, Comune di Napoli provincia di Napoli loc. Via Isidoro Fuortes si hanno le seguenti coordinate geografiche espresse in gradi sessadecimali:

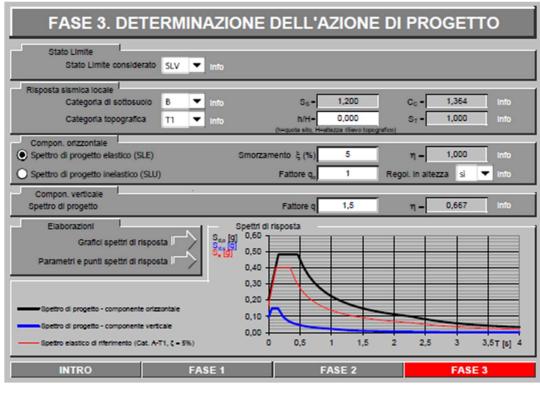
	WGS84	ED50
Latitudine:	40.85138 °	40.85238 °
Longitudine:	14.32810 °	14.32897 °

La descrizione dell'azione sismica, deve tener conto anche dei possibili effetti di amplificazione locale determinati dalla natura e dallo spessore degli strati di terreno più superficiali. In mancanza di studi più approfonditi ciò può essere fatto individuando la categoria di suolo su cui

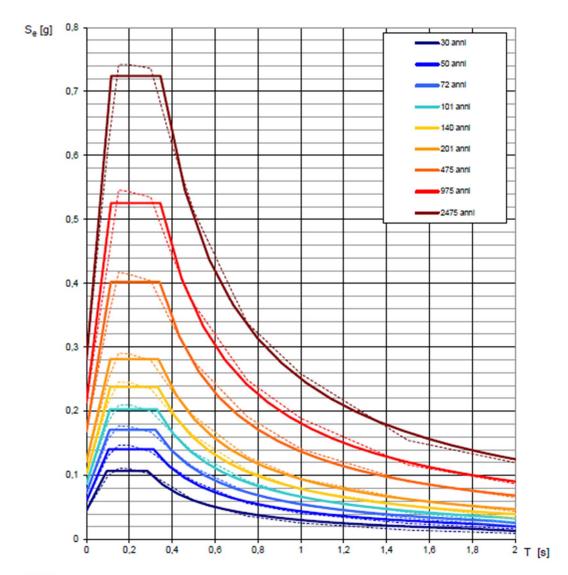
l'opera insiste e di conseguenza la forma spettrale da agganciare al valore di a_g relativo alle condizioni di sito rigido.

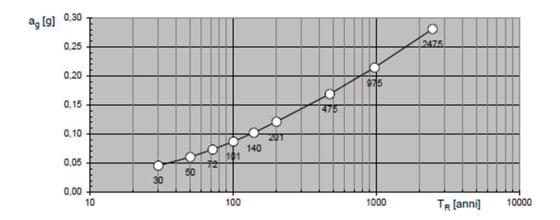

Nel caso in esame, ai fini del dimensionamento strutturale, si è considerato come categoria di profilo stratigrafico del suolo di fondazione terreno per l'amplificazione sismica la categoria **B**:

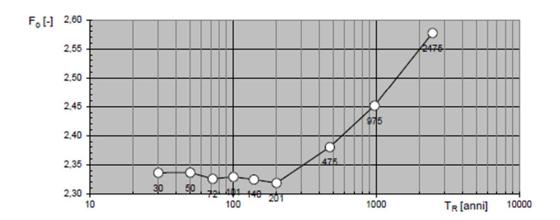

Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da

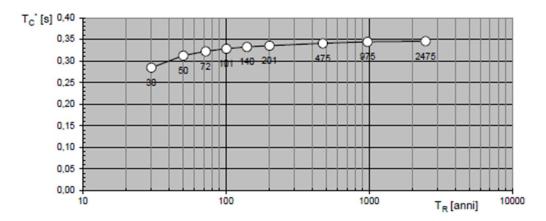

valori di velocità equivalente compresi tra 360 m/s e 800 m/s.

Categoria topografica: **T1**: Superficie pianeggiante, pendii e rilievi isolati con inclinazione media $i \le 15^{\circ}$


Rapporto h/H tra la quota del sito (h) e l'altezza rilievo topografico (H) = 1,00 Coefficiente di amplificazione topografica $S_T=1,00$.

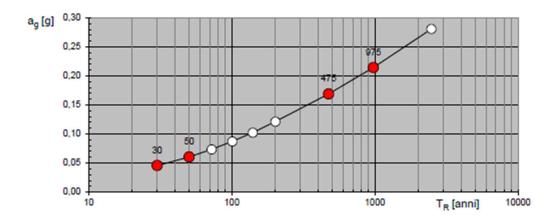


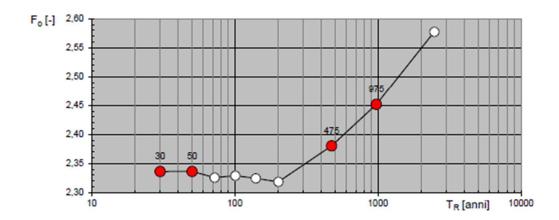

Spettri di risposta elastici per i periodi di ritorno T_R di riferimento

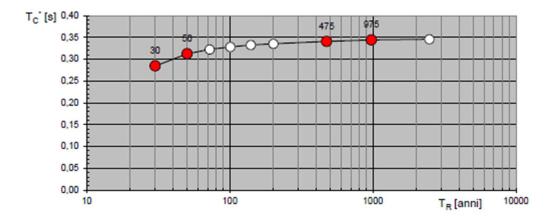


NOTA:
Con linea continua si rappresentano gli spettri di Normativa, con linea tratteggiata gli spettri del progetto
S1-INGV da cui sono derivati.

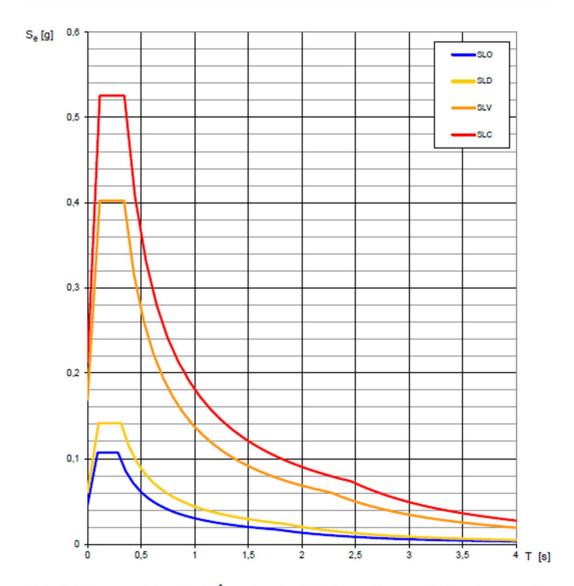
Valori dei parametri a_g, F_o, T_C*: variabilità col periodo di ritorno T_R

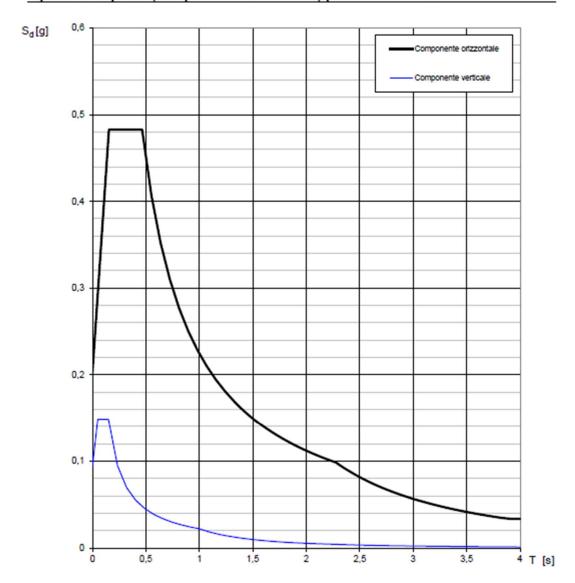





Valori dei parametri a_g , F_o , T_C^* per i periodi di ritorno T_R di riferimento

T _R	ag	F _o	T _c
[anni]	[9]	[-]	[s]
30	0,046	2,336	0,284
50	0,060	2,336	0,312
72	0,074	2,326	0,322
101	0,087	2,329	0,328
140	0,102	2,325	0,332
201	0,121	2,319	0,335
475	0,169	2,380	0,341
975	0,214	2,452	0,344
2475	0,281	2,578	0,346


Valori di progetto dei parametri a_g , F_o , T_c^* in funzione del periodo di ritorno T_R


Spettri di risposta elastici per i diversi Stati Limite

Valori dei parametri a_g , F_o , T_C^* per i periodi di ritorno T_R associati a ciascuno SL

SLATO LIMITE	T _R [anni]	a _g [9]	F₀ [-]	T _C *
SLO	30	0,046	2,336	0,285
SLD	50	0,061	2,336	0,312
SLV	475	0,169	2,380	0,341
SLC	975	0,214	2,452	0,344

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLV

Parametri e punti dello spettro di risposta orizzontale per lo stato limite: SLV

Parametri indipendenti

STATO LIMITE	SLV
aq	0,169 g
F _o	2,380
Tc	0,341 s
Ss	1,200
Cc	1,364
S _T	1,000
q	1,000

Parametri dipendenti

S	1,200
η	1,000
T _B	0,155 s
Tc	0,465 s
T _D	2,276 s

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T$$
 (NTC-08 Eq. 3.2.5)

$$\eta = \sqrt{\frac{10}{(5+\xi)}} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_B = T_C/3$$
 (NTC-07 Eq. 3.2.8)

$$T_{c} = C_{c} \cdot T_{c}^{*}$$
 (NTC-07 Eq. 3.2.7)

$$T_D = 4,0 \cdot a_g / g + 1,6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_d(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_d(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

		Se [g]
	0,000	0,203
T _B ←	0,155	0,483
T _c ←	0,465	0,483
	0,551	0,407
	0,637	0,352
	0,724	0,310
	0,810	0,277
	0,896	0,250
	0,982	0,228
	1,069	0,210
	1,155	0,194
	1,241	0,181
	1,327	0,169
	1,414	0,159
	1,500	0,150
	1,586	0,141
	1,672	0,134
	1,759	0,128
	1,845	0,122
	1,931	0,116
	2,017	0,111
	2,104	0,107
_	2,190	0,102
T _D ←	2,276	0,099
	2,358	0,092
	2,440	0,086
	2,522	0,080
	2,604	0,075
	2,686	0,071
	2,769	0,087
	2,851	0,063
	2,933	0,059
	3,015	0,056
	3,097	0,053
	3,179	0,051
	3,261	0,048
	3,343	0,046
	3,425	0,044
	3,507	0,042
	3,590	0,040
	3,672	0,038
	3,754	0,036
	3,836	0,035
	3,918 4,000	0,034
	4,000	0,004

SLV

Parametri indipendenti

STATO LIMITE	SLV
a _{qv}	0,094 g
Ss	1,000
S _T	1,000
q	1,500
T _B	0,050 s
Tc	0,150 s
T _D	1,000 s

Parametri dipendenti

i didiliotti dipol	i di vii ti
F _v	1,321
S	1,000
η	0,667

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T$$
 (NTC-08 Eq. 3.2.5)

$$\eta = 1/q$$
 (NTC-08 §. 3.2.3.5)

$$F_{v} = 1,35 \cdot F_{o} \cdot \left(\frac{a_{g}}{g}\right)^{0.5} \tag{NTC-08 Eq. 3.2.11}$$

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.10)

$$\begin{split} 0 &\leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Punti dello spettro di risposta

	T [s]	Se [g]
	0,000	0,094
T _B ←	0,050	0,149
T _c ←	0,150	0,149
	0,235	0,095
	0,320	0,070
	0,405	0,055
	0,490	0,046
	0,575	0,039
	0,660	0,034
	0,745	0,030
	0,830	0,027
	0,915	0,024
T _D ←	1,000	0,022
	1,094	0,019
	1,188	0,016
	1,281	0,014
	1,375	0,012
	1,469	0,010
	1,563	0,009
	1,656	0,008
	1,750	0,007
	1,844	0,007
	1,938	0,006
	2,031	0,005
	2,125	0,005
	2,219	0,005
	2,313	0,004
	2,406	0,004
	2,500	0,004
	2,594	0,003
	2,688	0,003
	2,781	0,003
	2,875	0,003
	2,969	0,003
	3,063	0,002
	3,156 3,250	0,002
		0,002
	3,344 3,438	0,002
		0,002
	3,531	0,002
	3,625 3,719	0,002
	3,813	0,002
	3,906	0,002
	4,000	0,001
	.,	2,301

A.2. - RELAZIONE SUI MATERIALI

OGGETTO: Nuovo Ecoquartiere a Ponticelli

COMMITTENTE: Comune di Napoli

COMUNE: Napoli

PROVINCIA: Napoli

LOCALITA': Via Isidoro Fuortes

DATA: maggio 2023

Revisione 00

A.2. RELAZIONE SUI MATERIALI IMPIEGATI

A.2 - 1.Premessa

La presente relazione si riferisce ai lavori di Realizzazione del Nuovo Ecoquartiere a Ponticelli con edifici multipiano aventi principalmente destinazione residenziale, con alloggi destinati al Social Housing e distribuiti tra i vari corpi di fabbrica, con il primo piano interrato adibito a parcheggi, box auto e locali destinati a fondo, a servizio delle abitazioni sito nel Comune di Napoli provincia di Napoli loc. Via Isidoro Fuortes di proprietà del Comune di Napoli.

Per quanto riguarda la descrizione delle opere da realizzare si rimanda alla RELAZIONE TECNICA ILLUSTRATIVA allegata al presente progetto.

I materiali ed i prodotti ad uso strutturale utilizzati nelle opere oggetto della presente relazione, dovranno rispondere ai requisiti indicati nel capitolo 11 del D.M. 17-01-2018 "Norme Tecniche per le Costruzioni". Essi saranno identificati univocamente dal produttore, qualificati sotto la sua responsabilità ed accettati dal Direttore dei Lavori mediante acquisizione e verifica della documentazione di qualificazione, nonché mediante eventuali prove sperimentali di accettazione.

Sulla base delle verifiche effettuate in sito ed in conformità alle disposizione normative vigenti si prevede la realizzazione delle opere in oggetto mediante l'adozione dei materiali di seguito descritti.

Per tutto quanto non esplicitamente descritto si intendono richiamate integralmente le disposizioni normative vigenti ed in particolare il D.M. 17-01-2018 e la circolare n°617 del 02-02-2009.

Tutti i materiali impiegati nella realizzazione delle strutture portanti saranno:

- identificati dal Produttore;
- · qualificati dal Fornitore;
- accettati dal Direttore dei lavori

In relazione ai precedenti punti 1) e 2) si potranno avere i seguenti casi:

- materiali per i quali è disponibile la norma europea armonizzata e quindi in possesso della marcatura CE: dovrà essere evidenziata la marcatura e dovranno essere forniti di Dichiarazione di Conformità;
- materiali non previsti nelle norma armonizzate, quindi qualificati secondo le modalità previste dal D.M. 17-01-2018: dovranno essere forniti di Attestato di Qualificazione;
- materiali e prodotti innovativi: dovranno essere forniti di Certificato di Idoneità Tecnica all'impiego

A.2 - 2.Materiali

È prescritta l'adozione dei seguenti materiali:

CARATTERISTICHE DEI MATERIALI ____D.M. 17.01.2018 [NTC18]

	ACCIAIO PER CALCESTRUZZO ARMATO									
	Tipo	Campi di impiego	Qualità	Qualità		(f _t /f _y) _k		(f _y /f _{ynom}) _k	Allungamento	
					[N/mm ²]				(A _{gt}) _k	
Α	ARM 1	ACCIAIO PER CEMENTO ARMATO	B 450 C	•	450	≥ 1,15	< 1,35	≤ 1,25	≥ 7,5 %	
A	ARM 2	ACCIAO PER RETI ELETTROSALDATE	B 450 A	▼	450	≥ 1,05		≤ 1,25	≥ 2,5 %	

	ACCIAIO PER STRUTTURE METALLICHE								
7	Гіро	Campi di impiego	Qualità		spessore elemento		f _{yk} [N/mm²]	Descrizione	
A	CC 1	Pilastri e travi	S 275	•	t ≤ 40 mm	•	275	laminati a caldo con profili a sezione aperta piani e lunghi	
A	CC 2		-	•	-	•	-	-	
A	CC 3			•	-	▼	-	-	
A	CC 4		-	•	-	•	-		
A	CC 5		-	▼	-	•	-	-	

		BU	ILLO	NI	
Tipo	Campi di impiego	Class	е	f _{yb} [N/mm²]	f _{tb} [N/mm ²]
BULL 1	Bulloni_1	8.8	•	640	800
BULL 2		-	▼	-	-

CALCESTRUZZO													
		UNI 111 (prosp.		I I I I I I I I I I I I I I I I I I I									
Tipo	Campi di impiego	Classe esposizio ambient	one	Classe (resisten		R_{ck} [N/mm 2]	Rapporto (A/C) max	Contenuto minimo di cemento [kg/m³]	Contenuto d'aria [%]	Classe consister gette	nza al	Tipo di cemen	nto
CLS 1	MAGRONI	X0	•	C12/15	▼	15	-	-	-	-	•	-	~
CLS 2	PALI	XC2	•	C25/30	lacksquare	30	0,60	300	-	S4	•	CEM III, CEM IV	lacksquare
CLS 3	FONDAZIONI	XC2	•	C30/37	▼	37	0,60	300	-	S4	•	CEM III, CEM IV	\blacksquare
CLS 4	ELEVAZIONI (pilastri, travi, setti)	XC3	•	C30/37	▼	37	0,55	320	-	S4	•	CEM III, CEM IV	lacksquare
CLS 5	ELEVAZIONI (solette, rampe scale)	хсз	•	C30/37	▼	37	0,55	320	-	S4	▼	CEM III, CEM IV	lacksquare
CLS 6		-	•	-	▼	-	-	-	-	-	•	-	lacksquare

1etodo di calcolo del copriferro UNI EN 1992-1-1 ▼	letodo di calcolo del copriferro	UNI EN 1992-1-1	•
--	----------------------------------	-----------------	---

Sensibilità delle armature alla corrosione → poco sensibile

 MATERIALI IMPIEGATI Vita utile struttura (anni) 50

MAGRONI	Classe di resistenza		C12/15	
Prescrizioni rischio:	R _{ck}		15	[N/mm ²]
-	Classe di esposizione		X0	
Prescrizioni ambientali:	Tipo di cemento: -		-	
Interno di edifici con umidità relativa molto bassa. Calcestruzzo non armato all'interno di edifici.	Rapporto Acqua/Cemento	o max	-	
Calcestruzzo non armato immerso in suolo non aggressivo o in acqua non aggressiva.	Contenuto minimo di cem	nento	-	[kg/m³]
Specifiche ambientali:	Classe di consistenza al (getto	-	
Per calcestruzzo privo di armatura o inserti metallici: tutte le esposizioni eccetto dove c'è gelo/disgelo, o attacco chimico. Calcestruzzi con armatura o inserti metallici: in ambiente molto asciutto.	Copriferro nominale		0	[mm]
Condizioni ambientali	Ordinarie			
Sensibilità alla corrosione armatura	poco sensibile			
Valore limite di apertura delle fessure	Combinazione di azioni	Stato limite	w _d (mm)	_
	frequente	apertura fessure	0,40	
	quasi permanente	apertura fessure	0,30	_
PALI	Classe di resistenza		C25/30	
Prescrizioni rischio:	R _{ck}		30	[N/mm ²]
Corrosione indotta da carbonatazione	Classe di esposizione		XC2	
Prescrizioni ambientali:	Tipo di cemento: Cem	nento d'altoforno/pozzolanico	CEM III, C	CEM IV
Parti di strutture di contenimento liquidi,fondazioni. Calcestruzzo armato ordinario o precompresso	Rapporto Acqua/Cemento	o max	0,6	
prevalentemente immerso in acqua o terreno non aggressivo	Contenuto minimo di cem	nento	300	[kg/m³]
Specifiche ambientali:	Classe di consistenza al q	getto	S4	
Bagnato, raramente asciutto.	Copriferro nominale		70±10	[mm]
Condizioni ambientali	Ordinarie			
Sensibilità alla corrosione armatura	poco sensibile			_
Valore limite di apertura delle fessure	Combinazione di azioni	Stato limite	w _d (mm)	_
	frequente	apertura fessure	0,40	
	nequente			

FONDAZIONI	Classe di resistenza		C30/37	
Prescrizioni rischio:	R _{ck}		37	[N/mm ²]
Corrosione indotta da carbonatazione	Classe di esposizione	e	XC2	
Prescrizioni ambientali:	Tipo di cemento:	Cemento d'altoforno/pozzolanico	CEM III, O	CEM IV
Parti di strutture di contenimento liquidi,fondazioni. Calcestruzzo armato ordinario o precompresso	Rapporto Acqua/Cem	nento max	0,60	
prevalentemente immerso in acqua o terreno non aggressivo	Contenuto minimo di	cemento	300	[kg/m³]
Specifiche ambientali:	Classe di consistenza	a al getto	S4	
Bagnato, raramente asciutto.	Copriferro nominale		45±10	[mm]
Condizioni am bientali	Ordinarie			
Sensibilità alla corrosione armatura	poco sensibile			
Valore limite di apertura delle fessure	Combinazione di azioni	Stato limite	w _d (mm)	_
	frequente	apertura fessure	0,40	
	quasi permanente	apertura fessure	0,30	_
ELEVAZIONI (pilastri, travi, setti)	Classe di resistenza		C30/37	
Prescrizioni rischio:	R _{ck}		37	[N/mm ²]
Corrosione indotta da carbonatazione	Classe di esposizione	e	XC3	
Prescrizioni ambientali:	Tipo di cemento:	Cemento d'altoforno/pozzolanico	CEM III, O	CEM IV
Calcestruzzo armato ordinario o precompresso in esterni con superfici	Rapporto Acqua/Cem	nento max	0,55	
esterne riparate dalla pioggia, o in interni con umidità da moderata ad alta	Contenuto minimo di	cemento	320	[kg/m³]
Specifiche ambientali:	Classe di consistenza	a al getto	S4	
Umidità moderata.	Copriferro nominale		40±10	[mm]
Condizioni am bientali	Ordinarie			
Sensibilità alla corrosione armatura	poco sensibile			
Valore limite di apertura delle fessure	Combinazione di azioni	Stato limite	w _d (mm)	<u>-</u>
	frequente	apertura fessure	0,40	
	quasi permanente	apertura fessure	0,30	

ELEVAZIONI (solette, rampe scale)	Classe di resistenza	3	C30/37	
Prescrizioni rischio:	R _{ck}		37	[N/mm ²]
Corrosione indotta da carbonatazione	Classe di esposizior	пе	XC3	
Prescrizioni ambientali:	Tipo di cemento:	Cemento d'altoforno/pozzolanico	CEM III, C	CEM IV
Calcestruzzo armato ordinario o precompresso in esterni con superfici	Rapporto Acqua/Cei	mento max	0,55	
esterne riparate dalla pioggia, o in interni con umidità da moderata ad alta	Contenuto minimo d	di cemento	320	[kg/m³]
Specifiche ambientali:	Classe di consistenz	za al getto	S4	
Umidità moderata.	Copriferro nominale		25±10	[mm]
Condizioni am bientali	Ordinarie			
Sensibilità alla corrosione armatura	poco sensibile			
Valore limite di apertura delle fessure	Combinazione di azioni	Stato limite	w _d (mm)	_
	frequente	apertura fessure	0,40	
	quasi permanente	apertura fessure	0,30	_
ACCIAIO PER CEMENTO ARMATO	Tipo		B 450 C	
	Tensione caratterist	tica di snervamento	450	[N/mm ²]

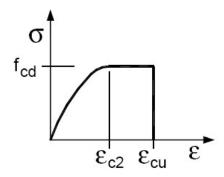
A.2 - 2.1 CALCESTRUZZO

Per le classi di resistenza normalizzate per calcestruzzo normale si può fare utile riferimento a quanto indicato nelle norme UNI EN 206 e nella UNI 11104.

Sulla base della denominazione normalizzata vengono definite le classi di resistenza della Tab.

4.1.I. riportata al punto §4.1. delle Norme Tecniche di cui al D.M. 17-01-2018

Tab. 4.1.I - Classi di resistenza


Classe di resistenza
C8/10
C12/15
C16/20
C20/25
C25/30
C30/37
C35/45
C40/50
C45/55
C50/60
C55/67
C60/75
C70/85
C80/95
C90/105

Oltre alle classi di resistenza riportate in Tab. 4.1.I si possono prendere in considerazione le classi di resistenza già in uso C28/35 e C32/40.

Per il calcestruzzo si adotta un diagramma tensione-deformazione parabola-rettangolo ponendo:

$$\epsilon_{c2} = 0,20 \%$$

$$\epsilon_{cu} = 0,35 \%$$

A.2 - 2.1.1. Composizione

Le prescrizioni seguenti, redatte in conformita alle UNI EN 206-2001 ed UNI 11104-2004, sono riferite ai calcestruzzi per strutture armate gettate in opera.

I calcestruzzi per strutture gettate in opera dovranno essere confezionati utilizzando i seguenti materiali e dosaggi:

- A. Calcestruzzo per magri di fondazione (Rck = 150 daN/cm²): cemento conforme alla norma armonizzata UNI EN 206-1 ovvero ad uno specifico Benestare Tecnico Europeo, (ETA) nonche, per quanto non in contrasto, conformi alle prescrizioni di cui alla Legge 26.5.1965, n. 595);
- B. Calcestruzzo per fondazioni (Rck = 370 daN/cm²): cemento conforme alla norma armonizzata UNI EN 206-1 ovvero ad uno specifico Benestare Tecnico Europeo, (ETA) nonche, per quanto non in contrasto, conformi alle prescrizioni di cui alla Legge 26.5.1965, n. 595)
 - dosaggio di cemento minimo: 300 kg/m³
 - massimo rapporto acqua/cemento: 0,60
 - aggregati non gelivi naturali, artificiali o di riciclo, anche leggeri, conformi alle UNI EN 12620 e 13055-1; per gli aggregati di riciclo si puo fare riferimento alle norme UNI 8520-1:2005 ed UNI 8520-2:2005; dimensione massima 20 mm;
- C. Calcestruzzo per elevazioni (Rck = 370 daN/cm²): cemento conforme alla norma armonizzata UNI EN 206-1 ovvero ad uno specifico Benestare Tecnico Europeo, (ETA) nonche, per quanto non in contrasto, conformi alle prescrizioni di cui alla Legge 26.5.1965, n. 595)
 - dosaggio di cemento minimo: 320 kg/m³
 - massimo rapporto acqua/cemento: 0,55
 - aggregati non gelivi naturali, artificiali o di riciclo, anche leggeri, conformi alle UNI EN 12620 e 13055-1; per gli aggregati di riciclo si puo fare riferimento alle norme UNI 8520-1:2005 ed UNI 8520-2:2005; dimensione massima 20 mm;

A.2 - 2.1.2. Qualità dei componenti

Le caratteristiche dei materiali, le modalita di confezionamento e posa in opera del calcestruzzo devono essere conformi alle Norme UNI 9858 ed ENV 206.

In particolare:

1) Leganti

Devono essere utilizzati esclusivamente i leganti idraulici definiti come cementi dalle disposizioni vigenti in materia, (norma armonizzata UNI EN 197 nonche, per quanto non in contrasto, alla Legge 26.5.1965, n. 595), con esclusione del cemento alluminoso.

Le caratteristiche chimiche e meccaniche sono conformi alle Norme UNI 197/1.

2) Inerti

Gli inerti, naturali o di frantumazione, devono essere costituiti da elementi non gelivi e non friabili, privi di sostanze organiche, limose ed argillose, di gesso, ecc., in proporzioni nocive all ' indurimento del conglomerato od alla conservazione delle armature.

La ghiaia o il pietrisco devono avere dimensioni massime commisurate alle caratteristiche geometriche della carpenteria del getto ed all' ingombro delle armature.

3) Aggiunte

Nei calcestruzzi è ammesso l' impiego di aggiunte, in particolare di ceneri volanti, loppe granulate d' altoforno e fumi di silice, purche non ne vengano modificate negativamente le caratteristiche prestazionali. Le ceneri volanti devono soddisfare i requisiti delle norme UNI EN 450-1. Per quanto riguarda l' impiego si puo fare riferimento alle norme UNI EN 206-1:2006 ed UNI 11104:2004. I fumi di silice devono soddisfare la norma europea UNI EN 13263-1.

4) Additivi

Gli additivi devono essere conformi alla UNI EN 934-2.

Potranno essere impiegati additivi fluidificanti o superfluidificanti per contenere il rapporto acqua/cemento mantenendo la lavorabilità necessaria.

5) Acqua d'impasto

L'acqua per gli impasti deve essere limpida, priva di sali (particolarmente solfati e cloruri) in percentuali dannose e non essere aggressiva. Deve essere conforme alla norma UNI EN 1008:2003.

A.2 - 2.1.3. Prescrizione per inerti

- Sabbia viva 0-7 mm, pulita, priva di materie organiche e terrose;
- sabbia fino a 30 mm (70 mm per fondazioni), non geliva, lavata;
- pietrisco di roccia compatta.

Assortimento granulometrico in composizione compresa tra le curve granulometriche sperimentali:

- passante al vaglio di mm 16 = 100%
- passante al vaglio di mm 8 = 88-60%
- passante al vaglio di mm 4 = 78-36%
- passante al vaglio di mm 2 = 62-21%
- passante al vaglio di mm 1 = 49-12%

A.2 - 2.1.4. Casserature

Viene prescritto l'uso di casseforme metalliche o di materiali fibrocompressi o compensati; in ogni caso, esse dovranno avere dimensioni e spessori sufficienti ad essere opportunamente irrigidite o controventate per assicurare l'ottima riuscita delle superfici dei getti e delle opere e la loro perfetta rispondenza ai disegni di progetto.

Nel caso di eventuale utilizzo di casseforme in legno, si dovrà curare che le stesse siano eseguite con tavole a bordi paralleli e ben accostate, in modo che non abbiano a presentarsi, dopo il disarmo, sbavature o disuguaglianze sulle facce in vista del getto. Si dovranno trattare le casseforme, prima del getto, con idonei prodotti disarmanti conformi alla norma UNI 8866. Le parti componenti i casseri devono essere a perfetto contatto e sigillate con idoneo materiale per evitare la fuoriuscita di boiacca cementizia.

Nel caso di casseratura a perdere, inglobata nell'opera, occorre verificare la sua funzionalità, se è elemento portante, e che non sia dannosa, se è elemento accessorio.

A.2 - 2.1.5. Prescrizione per il disarmo

Indicativamente: pilastri 3-4 giorni; solette modeste 10-12 giorni; travi, archi 24-25 giorni, mensole 28 giorni.

Per ogni porzione di struttura, il disarmo non può essere eseguito se non previa autorizzazione della Direzione Lavori.

A.2 - 2.1.6. Copriferri

Il copriferro minimo per soddisfare i requisiti di aderenza, durabilità ed eventuale resistenza al fuoco viene determinato applicando quanto previsto dal § 4.1.6.3 delle NTC2018.

Al fine della protezione delle armature dalla corrosione, lo strato di ricoprimento di calcestruzzo (copriferro) deve essere dimensionato in funzione dell'aggressività dell'ambiente e della sensibilità delle armature alla corrosione, tenendo anche conto delle tolleranze di posa delle armature; a tale scopo si fa riferimento alla UNI EN 1992-1-1.

I copriferro nominale di progetto è dato da:

 $c_{nom} = c_{min} + \Delta c_{dev}$ dove:

 \mathbf{c}_{nom} = valore nominale di progetto

c_{min}= valore minimo del copriferro

Δc_{dev}= la tolleranza di esecuzione relativa al copriferro

Il valore della tolleranza di esecuzione Δc_{dev} , è assunto di norma pari a 10 mm, ma se in cantiere si prevedono controlli di qualità che comportano la misura dei copriferri, può assumersi $\Delta c_{\text{dev}} = 5$ mm.

Nel caso si prevedono particolari controlli di qualità e la possibilità di poter scartare gli elementi strutturali con copriferro non conforme (è il caso in cui si usano elementi prefabbricati), può assumersi $\Delta c_{\text{dev}} = 0$.

Il valore minimo del copriferro è dato da:

 c_{min} = MAX($c_{min,b}$; $c_{min,dur}$; 10 mm) dove:

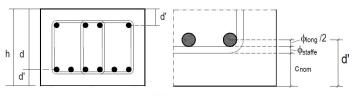
 $\mathbf{c}_{\text{min,b}}$ = copriferro minimo necessario per l'aderenza delle armature

 $\mathbf{c}_{\text{min,dur}} = \text{copriferro minimo correlato alle condizioni ambientali (durabilità)}.$

Il valore di $\mathbf{c}_{\min,b}$ è da assumersi pari al diametro della barra. Se la dimensione dell'inerte è più grande di 32 mm, il valore di $\mathbf{c}_{\min,b}$ deve essere maggiorato di 5 mm.

Le dimensioni minime da assumere per il copriferro in relazione alle condizioni ambientali ($\mathbf{c}_{\text{min,dur}}$), sono funzione della classe strutturale e della classe ambientale e si ricavano dalla tabella 4.4N dell'Eurocodice 2 che qui si riporta.

Гаb. 4.4 N - Со _ј	priferro	minimo	richiesto (mm)				
Classe			Classi di esposi	zione am	bientale in accord	o con il prospetto	4.1
Strutturale	X0	XC1	XC2/XC3	XC4	XD1 / XS1	XD2 / XS2	XD3 / XS3
S1	10	10	10	15	20	25	30
S2	10	10	15	20	25	30	35
S 3	10	10	20	25	30	35	40
S4	10	15	25	30	35	40	45
S 5	15	20	30	35	40	45	50
S6	20	25	35	40	45	50	55


La classe strutturale da prendere normalmente a riferimento per gli edifici è la S4 (vita media di progetto della struttura 50 anni).

A partire dalla classe strutturale di progetto della struttura, per il dimensionamento del copriferro minimo può farsi riferimento ad altre classe strutturali qualora sussistano le condizioni riportate nella tabella 4.3N.

Tabella 4.3 N - Determi	nazione Classe S	Strutturale					
Criteri	X0	XC1	XC2/XC3	XC4	XD1	XD2/XS1	XD3/XS2/XS3
Vita di progetto di 100 anni	Incrementa la classe di 2	Incrementa la classe di 2					
Classe di resistenza	≥ C30/37 riduci la classe di 1	≥ C30/37 riduci la classe di 1	≥ C35/45 riduci la classe di 1	≥ C40/50 riduci la classe di 1	≥ C40/50 riduci la classe di 1	≥ C40/50 riduci la classe di 1	≥ C45/55 riduci la classe d 1
Parti con geometria a piastra	riduci la classe di 1	riduci la classe d					
Speciali controlli di qualità sui calcestruzzi	riduci la classe di 1	riduci la classe d					

 c_{nom} = max ($c_{min,b}$, $c_{min,dur}$) + 10 (mm) \geq 20 mm

 $c_{\text{min},b} = \varphi \sqrt{n_b} \quad n_b \text{ numero di barre di } \text{ un eventuale gruppo di barre; per barra singola } n_b = 1.$

Altezze d e d'

Il ricoprimento armature sarà realizzato predisponendo opportuni distanziatori in fibrocemento o in alternativa in materiale plastico PVC.

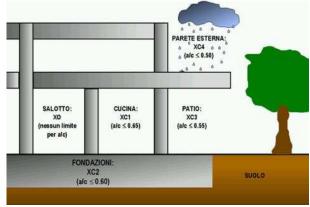
A.2 - 2.1.7. Durabilità

La classe d'esposizione ambientale del calcestruzzo che costituisce le strutture secondo i requisiti previsti dalla UNI 11104 e UNI EN 206-1, sarà:

					CALCESTRU	JZZO					
			UNI 11104 (prosp. 1)		UNI	11104 (prosp.	4)				
Tipo	Campi di impiego	Classe di esposizione ambientale	Classe di resistenza	R _{ck}	Rapporto (A/C) max	Contenuto minimo di cemento [kg/m³]	Contenuto d'aria [%]	Classe di consistenza al getto	Tipo di cemento	Diametro inerti D _{max} [mm]	Copriferro nominale [mm]
Cls 1	MAGRONI	X0	C12/15	15	-	-	-	-	-		0
Cls 2	PALI	XC2	C25/30	30	0,6	300	-	S4	CEM III, CEM IV	32	70±10
Cls 3	FONDAZIONI	XC2	C30/37	37	0,60	300	-	S4	CEM III, CEM IV	32	45±10
Cls 4	ELEVAZIONI (pilastri, travi, setti)	XC3	C30/37	37	0,55	320	-	S4	CEM III, CEM IV	16	40±10
	ELEVAZIONI (solette, rampe scale)	XC3	C30/37	37	0,55	320	-	S4	CEM III, CEM IV	16	25±10
	1										

Per garantire la durabilità della struttura sono stati presi in considerazioni opportuni stati limite di esercizio (SLE) in funzione dell'uso e dell'ambiente in cui la struttura dovrà vivere limitando sia gli stati tensionali, che nel caso delle opere in calcestruzzo, anche l'ampiezza delle fessure.

Le verifiche a fessurazione delle sezioni in calcestruzzo sono condotte secondo il § 4.1.2.2.4. del D.M. 17-01-2018 .

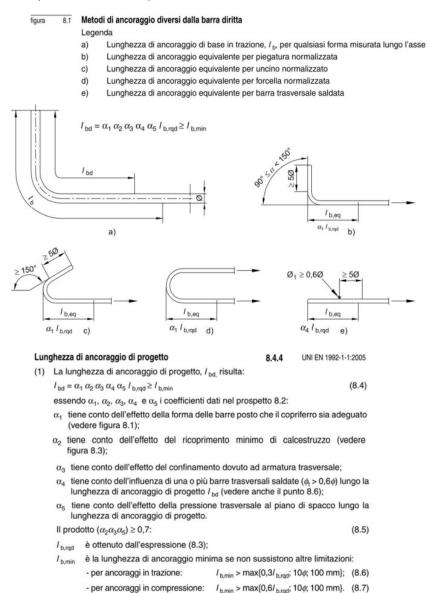

In funzione della classe di esposizione si avrà una condizione ambientale: **ordinaria** (tab. 4.1.III D.M. 17-01-2018).

Le armature sarannno del tipo "poco sensibile" alla corrosione.

Da tali impostazioni ne discende un valore limite di aperture della fessure riportato in tabella

Condinioni	Combinations	Armatura				
Condizioni ambientali	Combinazione di azioni	Poco sensibile				
ambientan	ui azioiii	Stato limite	Wd			
Ordinaria	Frequente	apertura fessure	\leq w ₃ = 0,40 mm			
Ordinaria	Quasi permanente	apertura fessure	\leq w ₂ = 0,30 mm			

1 Nessu	n rischio di corrosione o di attacco	
Х0	Calcestruzzo privo di armatura o inserti metallici: tutte le esposizioni eccetto dove c'è gelo/disgelo, abrasione o attacco chimico. Calcestruzzo con armatura o inserti metallici molto asciutto.	Calcestruzzo all'interno di edifici con umidità dell'aria molto bassa.
2 Corros	ione indotta da carbonatazione	
XC1	Asciutto o permanentemente bagnato	Calcestruzzo all'interno di edifici con bassa umidità relativa. Calcestruzzo costantemente immerso in acqua
XC2	Bagnato, raramente asciutto	Superfici di calcestruzzo a contatto con acqua per lungo tempo. Molte fondazioni
XC3	Umidità moderata	Calcestruzzo all'interno di edifici con umidità dell'aria moderata oppure elevata. Calcestruzzo esposto all'esterno protetto dalla pioggia
XC4	Ciclicamente bagnato e asciutto	Superfici di carcestruzzo soggette ai contatto con acqua, non nella classe di esposizione XC2
3 Corros	ione indotta da cloruri	
XD1	Umidità moderata	Superfici di calcestruzzo esposte a nebbia salina
XD2	Bagnato, raramente asciutto	Piscine. Calcestruzzo esposto ad acque industriali contenenti cloruri
XD3	Ciclicamente bagnato ed asciutto	Parti di ponti esposte a spruzzi contenenti cloruri Pavimentazioni stradali e di parcheggi
4 Corrosi	one indotta da cloruri presenti nell'acqua di m	nare
XS1	Esposto a nebbia salina ma non in contatto diretto con acqua di mare	Strutture prossime oppure sulla costa
XS2	Permanentemente sommerso	Parti di strutture marine
XS3	Zone esposte alle onde, agli spruzzi oppure alle maree	Parti di strutture marine
5 Attacco	o di cicli gelo/disgelo	
XF1	Moderata saturazione d'acqua, senza impiego di agente antigelo	Superfici verticali di calcestruzzo esposte alla pioggia e al gelo
XF2	Moderata saturazione d'acqua, con uso di agente antigelo	Superfici verticali di calcestruzzo di strutture stradali esposte al gelo e nebbia di agenti antigelo
XF3	Elevata saturazione d'acqua, senza antigelo	Superfici orizzontali di calcestruzzo esposte alla pioggia e al gelo
XF4	Elevata saturazione d'acqua, con antigelo oppure acqua di mare	Strade e impalcati da ponte esposti agli agenti antigelo Superfici di calcestruzzo esposte direttamente a nebbia contenente agenti antigelo e al gelo
6. Attacc	o chimico	
XA1	Ambiente chimico debolmente aggressivo	Suoli naturali ed acqua del terreno
XA2	Ambiente chimico moderatamente aggressivo	Suoli naturali ed acqua del terreno
XA3	Ambiente chimico fortemente aggressivo	Suoli naturali ed acqua del terreno



Schematizzazione delle classi di esposizione XO ed XC in una costruzione.

A.2 - 2.1.8. Ancoraggio delle barre e loro giunzione

Come previsto al § 4.1.6.1.4 del DM 17-01-2018, le armature longitudinali devono essere interrotte oppure sovrapposte preferibilmente nelle zone compresse o di minore sollecitazione. La continuità fra le barre può effettuarsi mediante:

- sovrapposizione, calcolata in modo da assicurare l'ancoraggio di ciascuna barra. In ogni
 caso la lunghezza di sovrapposizione nel tratto rettilineo deve essere non minore di
 quanto prescritto al § 4.1.2.3.10. La distanza mutua (interferro) nella sovrapposizione
 non deve superare 4 volte il diametro;
- saldatura, eseguita in conformità alla norma UNI EN ISO 17660-1:2007. Devono essere
 accertate la saldabilità degli acciai che vengono impiegati, nonché la compatibilità fra
 metallo e metallo di apporto nelle posizioni o condizioni operative previste nel progetto
 esecutivo;
- giunzioni meccaniche per barre di armatura. Tali giunzioni sono qualificate secondo quanto indicato al § 11.3.2.9.

A.2 - 2.1.9. Indicazioni generali da rispettare

- Sovrapporre i ferri nelle riprese per almeno 60 diametri ;
- Impiegare distanziatori in plastica o pasta di cemento per garantire un copriferro (misurato dall'esterno ferro e non dal baricentro ferro) di almeno cm 2,5 per le travi e cm 3 per i pilastri (a meno di prescrizioni superiori per esigenze di REI);
- Estendere la rete nella soletta dei solai fino all'esterno cordolo o travi;
- Sovrapporre le reti di cui sopra per almeno cm 20 ;
- Ancorare i ferri aggiuntivi superiori dei solai all'esterno delle travi di bordo, curando di tenere il baricentro a circa 2.5 cm dal filo superiore del getto della caldana del solaio;
- Nella giunzione per sovrapposizione dei ferri, non legare i due ferri fra loro, ma tenerli distanziati di almeno cm 2 (interferro).

A.2 - 2.1.10. Tolleranze esecutive

Nelle opere finite gli scostamenti ammissibili (tolleranze) rispetto alle dimensioni e/o quote dei progetti sono riportate di seguito per i vari elementi strutturali:

- Fondazioni: plinti, platee, solettoni ecc:
 - posizionamento rispetto alle coordinate di progetto $\delta = \pm 3.0$ cm
 - dimensioni in pianta $\delta = -3.0$ cm o + 5.0 cm
 - dimensioni in altezza (superiore) $\delta = -0.5$ cm o + 3.0 cm
 - quota altimetrica estradosso $\delta = -0.5$ cm o + 2.0 cm
- Strutture in elevazione: pilastri, travi, setti ecc.:
 - posizionamento rispetto alle coordinate degli allineamenti di progetto S = ± 2,0 cm
 - dimensione in pianta (anche per pila piena) $\delta = -0.5$ cm o + 2.0 cm
 - spessore muri, pareti, pile cave o spalle $\delta = -0.5$ cm o + 2.0 cm
 - quota altimetrica sommità S = ± 1,5 cm
 - verticalità per H ≤600 cm δ = ± 2,0 cm
 - verticalità per H > 600 cm $\delta = \pm H/12$
- Solette e solettoni per impalcati, solai in genere:
 - spessore: $\delta = -0.5$ cm o + 1.0 cm
 - quota altimetrica estradosso: $\delta = \pm 1.0$ cm
- Vani, cassette, inserterie:
 - posizionamento e dimensione vani e cassette: $\delta = \pm 1.5$ cm
 - posizionamenti inserti (piastre boccole): $\delta = \pm 1.0$ cm

In ogni caso gli scostamenti dimensionali negativi non devono ridurre i copriferri minimi prescritti dal progetto.

A.2 - 2.1.11. CALCESTRUZZO PER MAGRONI FONDAZIONE

Caratteristic	esistenza		•						C12/15	[N/mm ²]
	the del calces	truzzo							-	
R _{ck}			a a compres	sione cubica	4				15	[N/mm ²]
f _{ck}				sione cilindr					12,00	
				Storie Cilitar	ica		6-1-10			[N/mm ²]
f_{cm}	Resistenza						= fck+8		20,00	[N/mm ²]
f_{ctm}	Resistenza	media a tra	zione sempl	ice			$= 0.3 \times f_{dk}^{2/3}$		1,57	[N/mm ²]
f_{cfm}	Resistenza	media a tra	zione per fle	ssione			= 1,2 \times f _{ctm}		1,89	[N/mm ²]
f_{ctk}	Resistenza	caratteristic	a a trazione	!			= $0.7 \times f_{ctm}$		1,10	[N/mm ²]
f_{bk}	Resistenza	tangenziale	caratteristi	ca di aderen	za (ø < 32 mm	1)	= $2,2 \times \eta \times f_{ctk}$		2,48	[N/mm ²]
f* _{bk}	Resistenza	tangenziale	caratteristi	ca di aderen	za in zona tes	a	$= f_{bk} / 1,50$		1,65	[N/mm ²]
E _{am}	Modulo elas						0×[f _{cm} /10] ^{0,3}		27.085	[N/mm ²]
						- 22000	/^['am/10]			1
α	Coefficiente	dilatazione	termica						1,00E-05	[°C ⁻¹]
Resistenze d	di calcolo									1
α_{cc}	Coefficiente	riduttivo pe	er le resister	nze a lunga i	durata				0,85	
γc	Coefficiente	parziale sid	curezza del o	calcestruzzo					1,50	
f_{cd}	Resistenza	di calcolo a	compression	ne			$= \alpha_{cc} \times f_{ck} / \gamma_{c}$		6,80	[N/mm ²]
f* _{cd}	Resistenza	di calcolo a	compression	ne elementi i	piani e con sp.	< 50 mm	= 0,80 × f _{cd}		5,44	[N/mm ²]
f _{ctd}			trazione allo		Р.		$= f_{ctk}/\gamma_c$		0,73	[N/mm ²]
							$= f_{bk}/\gamma_c$ = f_{bk}/γ_c		*)	
f _{bd}			diaderenza				DIC 10		1,65	[N/mm ²]
f* _{bd}				a di calcolo ir	n zona tesa		$= f^*_{bk}/\gamma_c$		1,10	[N/mm ²]
Tensione an	nmissibile pe	r combinazio	ne:							
☐ Elementi	piani (solette, pa	areti) gettati ir	n opera con cls o	ordinari e con sp	essoriminori di 50	mm (riduzione :	20% dei valori li	mite)	NO	
	rara	oc.amm					$= 0,60 \times f_{ck}$		7,20	[N/mm ²]
quasir	permanente	σ _{c.amm}					$= 0.45 \times f_{ck}$		5,40	[N/mm ²]
									2004/2005	Tipologia di
Classe di esposizione ambientale		Specifiche	ambientali		·	Prescrizioni	ambientali		Condizioni ambientali (tab. 4.1III)	armatura e di elemento (tab. C4.1IV)
XO		sizioni eccett attacco zi con armat	allici: lo dove c'è ge chimico. ura o inserti r olto asciutto.		Calcestruzzo aggress Calcestruzzo r	o non armato sivo o in acqu non armato s	o ad abrasion	suolo non siva. i di bagnato	Ordinarie	barre da c.a a elementi
	CAL	COLO COP	RIFERRO: U	JNI EN 199	2-1-1		Controllo d	i qualità pro	duzione cls	NO
			barre		max(c _{min,dur} ;c _{min,b} ;10		Controllo d	r quanta pr	Dudzione eis	
						tolleranza	C _{nom} =		sp. minimo	
$c_{min}+\Delta c_{Vn}$	C _{min,dur}	ø _{max,am}	raggruppate n _b	C _{min,b}	mm) C _{min}	$\Delta c_{ m dev}$	c _{min} +∆c _{dev}	interferro	struttura	Diametro ineri
c _{min} +Δc _{Vn}	c _{min,dur}	ø _{max,am}	120 CH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	c _{min,b}				interferro [mm]		7796
			nь	[mm]	C _{min}	Δc_{dev}	c _{min} +∆c _{dev}		struttura	200
[mm] 0	[mm] 0	[mm] 0	n _b [-] 0	[mm]	c _{min} [mm] 0	Δc _{dev} [mm] ±10	c _{min} +Δc _{dev} [mm]		struttura	D _{max}
[mm] 0 0	[mm] 0 0	[mm] 0 0	n _b [-]	[mm] 5	C _{min} [mm] 0	Δc _{dev} [mm] ±10 ±10	c _{min} +Δc _{dev} [mm] 0	[mm]	struttura [mm]	D _{max}
[mm] 0	[mm] 0	[mm] 0	п _ь [-] 0	[mm] 5 5 C	C _{min} [mm] 0 0 opriferro c _{nom} c	Δc_{dev} [mm] ± 10 ± 10 da adottare	C _{min} +∆C _{dev} [mm] 0 0	[mm] 100	struttura [mm]	D _{max}
[mm] 0 0	[mm] 0 0	[mm] 0 0	п _ь [-] 0	[mm] 5 5 C	C _{min} [mm] 0	Δc_{dev} [mm] ± 10 ± 10 da adottare	C _{min} +∆C _{dev} [mm] 0 0	[mm] 100	struttura [mm]	D _{max}
$[mm] \\ 0 \\ 0 \\ \Delta c_{dur,add} \\ Classe \ di$	[mm] 0 0	[mm] 0 0 [mm]	n _b [-] 0 0 CLASSE	[mm] 5 5 CDI CONSIS	C _{min} [mm] 0 0 opriferro c _{nom} c	Δc_{dev} [mm] ± 10 ± 10 da adottare	c _{min} +Δc _{dev} [mm] 0 0 0 al cono di Ab	[mm] 100	struttura [mm]	D _{max}
$[mm] \\ 0 \\ 0 \\ \Delta c_{dur,add} \\$	[mm] 0 0	[mm] 0 0 [mm]	n _b [-] 0 0 CLASSE	[mm] 5 5 C DI CONSIS	C _{min} [mm] 0 0 opriferro c _{nom} c	Δc_{dev} [mm] ± 10 ± 10 da adottare	c _{min} +Δc _{dev} [mm] 0 0 0 al cono di Ab	[mm] 100 prams	struttura [mm]	D _{max}
$[mm] \\ 0 \\ 0 \\ \Delta c_{dur,add} \\ Classe \ di$	[mm] 0 0	[mm] 0 0 [mm]	n _b [-] 0 0 CLASSE	[mm] 5 5 C DI CONSIS	C _{min} [mm] 0 0 opriferro c _{nom} c	Δc _{dev} [mm] ±10 ±10 da adottare	c _{min} +∆c _{dev} [mm] 0 0 0 Applications of the state	[mm] 100 prams	struttura [mm]	D _{max}
[mm] 0 0 \[\Delta \Cdur, add \] Classe di consistenza -	[mm] 0 0 0 Denominazio	[mm] 0 0 [mm]	n _b [-] 0 0 CLASSE	[mm] 5 5 C DI CONSIS	C _{min} [mm] 0 0 0 opriferro c _{nom} 0	Δc _{dev} [mm] ±10 ±10 da adottare	c _{min} +∆c _{dev} [mm] 0 0 0 Applications of the state	[mm] 100 prams	struttura [mm]	D _{max}
[mm] 0 0 ΔCdur,add Classe di consistenza	[mm] 0 0 0 Denominazio	[mm] 0 0 [mm]	n₀ [-] 0 0 0 CLASSE Abbassame (m	[mm] 5 5 C DI CONSIS	C _{min} [mm] 0 0 0 opriferro c _{nom} 0	Δc _{dev} [mm] ±10 ±10 da adottare	c _{min} +∆c _{dev} [mm] 0 0 0 Applications of the state	[mm] 100 prams	struttura [mm] 300 -2,00 %	D _{max}
[mm] 0 0 \[\Delta \Cdur, add \] Classe di consistenza -	[mm] 0 0 0 Denominazio	[mm] 0 0 [mm]	n₀ [-] 0 0 0 CLASSE Abbassame (m	[mm] 5 5 C DI CONSIS	C _{min} [mm] 0 0 0 opriferro c _{nom} 0	Δc _{dev} [mm] ±10 ±10 da adottare	c _{min} +∆c _{dev} [mm] 0 0 0 Applications of the state	[mm] 100 prams	struttura [mm] 300	D _{max}
$[mm] \\ 0 \\ 0 \\ \Delta C_{dur,add} \\ Classe \ di \\ consistenza \\ - \\ \varepsilon_{c2} \\ \varepsilon_{cu}$	[mm] 0 0 0 Denominazio	[mm] 0 0 [mm] one corrente	n _b [-] 0 0 CLASSE Abbassame (m	[mm] 5 5 C DI CONSIS ento al cono m) DEFORMA bolico	C _{min} [mm] 0 0 opriferro C _{nom} 0 TENZA - Abba	Δc _{dev} [mm] ±10 ±10 da adottare	c _{min} +∆c _{dev} [mm] 0 0 0 Applications of the state	[mm] 100 prams	struttura [mm] 300 -2,00 %	D _{max}
$[mm] \\ 0 \\ 0 \\ \Delta C_{dur,add} \\ Classe \ di \\ consistenza \\ - \\ \varepsilon_{c2} \\ \varepsilon_{cu}$	[mm] 0 0 0 Denominazio	[mm] 0 0 [mm] one corrente	n _b [-] 0 0 CLASSE Abbassame (m	[mm] 5 5 C DI CONSIS ento al cono m) DEFORMA bolico	C _{min} [mm] 0 0 opriferro C _{nom} 0 TENZA - Abba	Δc _{dev} [mm] ±10 ±10 da adottare	c _{min} +∆c _{dev} [mm] 0 0 0 Applications of the state	[mm] 100 prams	struttura [mm] 300 -2,00 %	D _{max}
$[mm] \\ 0 \\ 0 \\ \Delta C_{dur,add} \\ Classe di consistenza \\ - \\ \varepsilon_{c2} \\ \varepsilon_{cu} \\ Legame$	[mm] 0 0 0 Denominazio	[mm] 0 0 [mm] one corrente	n _b [-] 0 0 CLASSE Abbassame (m	[mm] 5 5 C DI CONSIS ento al cono m) DEFORMA bolico	C _{min} [mm] 0 0 opriferro C _{nom} 0 TENZA - Abba	Δc _{dev} [mm] ±10 ±10 da adottare assamento a	C _{nin} +ΔC _{dev} [mm] 0 0 1 Cono di Ab	[mm] 100 prams -	-2,00 % -3,50 %	D _{max}
$[mm] \\ 0 \\ 0 \\ \Delta c_{dur,add} \\ Classe di \\ consistenza \\ - \\ \varepsilon_{c2} \\ \varepsilon_{cu} \\ Legame \\ 8 \\ 6$	[mm] 0 0 0 Denominazio	[mm] 0 0 [mm] one corrente	n _b [-] 0 0 CLASSE Abbassame (m	[mm] 5 5 C DI CONSIS ento al cono m) DEFORMA bolico	C _{min} [mm] 0 0 opriferro C _{nom} 0 TENZA - Abba	Δc _{dev} [mm] ±10 ±10 da adottare assamento a	c _{min} +∆c _{dev} [mm] 0 0 0 Applications of the state	[mm] 100 prams -	-2,00 % -3,50 %	D _{max}
$[mm] \\ 0 \\ 0 \\ \Delta C_{dur,add} \\ Classe di \\ consistenza \\ - \\ \varepsilon_{c2} \\ \varepsilon_{cu} \\ Legame \\ 8 \\ 6$	[mm] 0 0 0 Denominazio	[mm] 0 0 [mm] one corrente	n _b [-] 0 0 CLASSE Abbassame (m	[mm] 5 5 C DI CONSIS ento al cono m) DEFORMA bolico	C _{min} [mm] 0 0 opriferro C _{nom} 0 TENZA - Abba	Δc _{dev} [mm] ±10 ±10 da adottare assamento a	C _{nin} +ΔC _{dev} [mm] 0 0 1 Cono di Ab	[mm] 100 prams -	-2,00 % -3,50 %	D _{max} [mm]
$[mm] \\ 0 \\ 0 \\ \Delta C_{dur,add} \\ Classe di \\ consistenza \\ - \\ \varepsilon_{c2} \\ \varepsilon_{cu} \\ Legame \\ 8 \\ 6$	[mm] 0 0 0 Denominazio	[mm] 0 0 [mm] one corrente	n _b [-] 0 0 CLASSE Abbassame (m	[mm] 5 5 C DI CONSIS ento al cono m) DEFORMA bolico	C _{min} [mm] 0 0 opriferro C _{nom} 0 TENZA - Abba	Δc _{dev} [mm] ±10 ±10 da adottare assamento a	$c_{min}+\Delta c_{dev}$ [mm] 0 0 0 al cono di Ab Ap	[mm] 100 prams -	-2,00 % -3,50 %	D _{max} [mm]
[mm] 0 0 \[\Delta \text{Cdur,add} \] Classe di consistenza \[\text{-} \] \[\epsilon_{cu} \] Legame \[\text{8} \\ \text{6} \\ \text{7} \\ \text{E} \\ \text{E} \\ \text{6} \\ \text{6} \\ \text{7} \\ \text{E} \\ \text{E} \\ \text{6} \\ \text{7} \\ \text{8} \\ \text{8} \\ \text{6} \\ \text{7} \\ \text{8} \\ \text{8} \\ \text{7} \\ \text{8} \\ \text{6} \\ \text{7} \\ \text{8} \\ \text{7} \\ \text{8} \\ \text{7} \\ \text{8} \\ \text{8} \\ \text{9} \\	[mm] 0 0 0 Denominazio	[mm] 0 0 [mm] one corrente	n _b [-] 0 0 CLASSE Abbassame (m	[mm] 5 5 C DI CONSIS ento al cono m) DEFORMA bolico	C _{min} [mm] 0 0 opriferro C _{nom} 0 TENZA - Abba	Δc _{dev} [mm] ±10 ±10 da adottare assamento a	$c_{min}+\Delta c_{dev}$ [mm] 0 0 0 al cono di Ab Ap	[mm] 100 prams pplicazioni -	-2,00 % -3,50 % per	D_{max} $[mm]$
$[mm] \\ 0 \\ 0 \\ \Delta C_{dur,add} \\ Classe di \\ consistenza \\ - \\ \varepsilon_{c2} \\ \varepsilon_{cu} \\ Legame \\ 8 \\ 6$	[mm] 0 0 0 Denominazio	[mm] 0 0 [mm] one corrente	n _b [-] 0 0 CLASSE Abbassame (m	[mm] 5 5 C DI CONSIS ento al cono m) DEFORMA bolico	C _{min} [mm] 0 0 opriferro C _{nom} 0 TENZA - Abba	Δc _{dev} [mm] ±10 ±10 da adottare assamento a	$c_{min}+\Delta c_{dev}$ [mm] 0 0 0 al cono di Ab Ap	[mm] 100 prams pplicazioni -	-2,00 % -3,50 % per	D_{max} $[mm]$
[mm] 0 0 0 ΔCdur,add Classe di consistenza	[mm] 0 0 0 Denominazio	[mm] 0 0 [mm] one corrente	n _b [-] 0 0 CLASSE Abbassame (m	[mm] 5 5 C DI CONSIS ento al cono m) DEFORMA bolico	C _{min} [mm] 0 0 opriferro C _{nom} 0 TENZA - Abba	Δc _{dev} [mm] ±10 ±10 da adottare essamento a	$c_{min}+\Delta c_{dev}$ [mm] 0 0 0 al cono di Ab Ap	[mm] 100 prams	-2,00 % -3,50 % per	D_{max} $[mm]$
[mm] 0 0 ΔCdur,add Classe di consistenza ε _{c2} ε _{cu} Legame	[mm] 0 0 0 Denominazio	[mm] 0 0 [mm] one corrente	n _b [-] 0 0 CLASSE Abbassame (m	[mm] 5 5 C DI CONSIS ento al cono m) DEFORMA bolico	C _{min} [mm] 0 0 TENZA - Abba	Δc _{dev} [mm] ±10 ±10 da adottare assamento a	$c_{min}+\Delta c_{dev}$ [mm] 0 0 0 al cono di Ab Ap	[mm] 100 prams	-2,00 % -3,50 % per	D_{max} $[mm]$

A.2 - 2.1.12. CALCESTRUZZO PER FONDAZIONI

Classe di re	esistenza								C25/30	[N/mm ²]
	che del calces	struzzo							020,00	[14/11IIII]
				ciono cubic					30	[N]/m===27
R _{ck}			ca a compres							[N/mm²]
f _{ck}			ca a compres	sione cilinai	тса				25,00	[N/mm ²]
f _{cm}		cilindrica me					= fck+8		33,00	[N/mm²]
f_{ctm}			zione sempl				$= 0,3 \times f_{ck}^{2/3}$		2,56	[N/mm²]
f_{cfm}	Resistenza	media a tra	zione per fle	ssione			$= 1,2 \times f_{ctm}$		3,08	[N/mm ²]
f_{ctk}	Resistenza	caratteristic	ca a trazione				$= 0,7 \times f_{ctm}$		1,80	[N/mm ²]
f_{bk}	Resistenza	tangenziale	caratteristic	ca di aderen	za (ø < 32 mn	n)	= $2,2 \times \eta \times f_{ctk}$		4,04	[N/mm ²]
$f*_{bk}$	Resistenza	tangenziale	caratteristi	ca di aderen	za in zona tes	sa	$= f_{bk} / 1,50$		2,69	[N/mm ²]
E_{cm}	Modulo elas	stico istanta	neo			= 22000	$0 \times [f_{cm}/10]^{0,3}$		31.476	[N/mm ²]
α	Coefficiente	dilatazione	termica						1,00E-05	[°C ⁻¹]
Resistenze	di calcolo									
α_{cc}	Coefficiente	riduttivo pe	er le resister	ze a lunga	durata				0,85	1
γc	Coefficiente	parziale si	curezza del o	alcestruzzo					1,50	1
f_{cd}	Resistenza	di calcolo a	compression	ne			$= \alpha_{cc} \times f_{ck} / \gamma_{c}$		14,17	[N/mm ²]
f* _{cd}					piani e con sp	. < 50 mm	$= 0.80 \times f_{cd}$		11,33	[N/mm ²]
f _{ctd}			trazione allo				$= f_{ctk}/\gamma_c$		1,20	[N/mm ²]
f _{bd}			di aderenza				$= f_{bk}/\gamma_c$		2,69	[N/mm ²]
f* _{bd}			di aderenza		n zona tesa		$= f^*_{bk}/\gamma_c$		1,80	[N/mm ²]
	nmissibile pe	3		. 41 41000 1	. Long tesa		— i bk//c		1,00	[14/11111]
				rdinari o cas	essori minori di 50	mm (ridusis = -	2004 dai velesi I	mite)	NO	
Liemenu			1 opera con cis c	rdinari e con sp	essoriminori di 50	mm (nauzione				FN1/27
	rara	⊙c.amm					$= 0,60 \times f_{ck}$		15,00	[N/mm ²]
quasi	permanente T	Øc.amm					$= 0,45 \times f_{ck}$		11,25	[N/mm ²]
Classe di esposizione ambientale		Specifiche	ambientali			Prescrizioni	Condizioni ambientali (tab. 4.1III)	Tipologia di armatura e di elemento (tab. C4.1IV)		
XC2	В	agnato, rara	mente asciutt	o.		o armato ord	linario o prec o in acqua o t	ompresso	Ordinarie	barre da c.a al elementi
CALCO	LO COPRI	FERRO: UN	EN 1992-1	-1 - CLASS	E STRUTTUR	ALE S4	Controllo d	i qualità pro	oduzione cls	NO
			barre		max(c _{min,dur} ;c _{min,b} ;10	tolleranza	c -			Diametro inert
$c_{min}+\Delta c_{Vn}$	C _{min,dur}	ø _{max,arm}	raggruppate	C _{min,b}	mm) C _{min}	ΔC _{dev}	$C_{nom} = C_{min} + \Delta C_{dev}$	interferro	sp. minimo struttura	D _{max}
F1		F7	n _b	F1		f1	400	Farmer 1		F1
[mm]	[mm]	[mm]	[-]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
25	25	20	2	29	29	±10	39±10	100	520	20
25	25	10	1	10	25	±10	35±10			
$\Delta C_{dur,add}$	0	[mm]			opriferro c _{nom}		35±10			
			CLASSE	DI CONSIS	TENZA - Abba	ssamento a	al cono di Al	orams		
Classe di consistenza	Denominazio	one corrente	Abbassame (m	nto al cono m)			Ад	pplicazioni		
S4	Flu	ida	da 160	a 210	Plinti, Pilast		erticali, Getti pa, Strutture			, Platee, Getti con
			1	DEFORMA	ZIONE LIMIT	E DEL MAT	ERIALE			
ε _{c2}	Deformazio	ne limite de	l tratto para	bolico					-2,00 ‰	
ϵ_{cu}	Deformazio	ne ultima							-3,50 ‰	
1			D							
	costitutivo	caicestruzz	zo: Parabola	-rettangolo	1					
16										
14						σείε	$\epsilon_{\rm c}$)=2. $f_{\rm cd}/\epsilon_{\rm c2}$.[4	ε _c -ε _c ² /(2·ε _c ₂)1	per	$\varepsilon_c \le \varepsilon_{c2}$
72 E 10								/ (/]	r =-	
√mπ/ 10	/							$\sigma_c(\varepsilon_c) = f_{cd}$	per	$\varepsilon_c > \varepsilon_{c2}$
								-c(-c) - 1cd	per	-c / -c2
Z) 6										
5										
200										
4 -	% -0,05%	-0,10% -0,15		-0,25% -0,3	0% -0,35% -(ε				

A.2 - 2.1.13. CALCESTRUZZO PER PALI

	esistenza		<i>ILI</i>						C25/30	[N/mm ²]
	the del calces	tru270							C25/50	[N/IIIII]
			a a compres	siono subis					30	FNI / 21
R _{ck}										[N/mm ²]
f _{ck}			a a compres	sione cilinai	ica		6.10		25,00	[N/mm ²]
f _{cm}		cilindrica me					= fck+8		33,00	[N/mm ²]
f _{ctm}			zione sempl				$= 0.3 \times f_{dk}^{2/3}$		2,56	[N/mm²]
f_{dm}			zione per fle				$= 1,2 \times f_{ctm}$		3,08	[N/mm²]
f_{ctk}	Resistenza	caratteristic	a a trazione				$= 0.7 \times f_{ctm}$		1,80	[N/mm ²]
f_{bk}	Resistenza	tangenziale	caratteristi	ca di aderen	za (ø < 32 mn	n) :	= $2,2 \times \eta \times f_{ctk}$		4,04	[N/mm ²]
f* _{bk}	Resistenza	tangenziale	caratteristi	ca di aderen	za in zona tes	a	$= f_{bk} / 1,50$		2,69	[N/mm ²]
E _{am}	Modulo elas	stico istanta	neo			= 22000	$\times [f_{cm}/10]^{0,3}$		31.476	[N/mm ²]
α	Coefficiente	dilatazione	termica						1,00E-05	[°C ⁻¹]
Resistenze (di calcolo									
α_{cc}	Coefficiente	riduttivo pe	er le resister	nze a lunga	durata				0,85]
γc	Coefficiente	parziale sid	curezza del d	alcestruzzo					1,50	1
f_{cd}	Resistenza	di calcolo a	compression	ne			$= \alpha_{cc} \times f_{ck} / \gamma_{c}$		14,17	[N/mm ²]
f* _{cd}	Resistenza	di calcolo a	compression	ne elementi	piani e con sp	. < 50 mm	$= 0.80 \times f_{cd}$		11,33	[N/mm ²]
f _{ctd}			trazione allo				$= f_{ctk}/\gamma_c$		1,20	[N/mm ²]
f _{bd}			di aderenza				$= f_{bk}/\gamma_c$		2,69	[N/mm ²]
f* _{bd}			di aderenza		n zona tesa		$= f^*_{bk}/\gamma_c$		1,80	[N/mm ²]
	nmissibile pe						- · bk/ /c		1,00	[14/11111]
				rdinari o con	essori minori di 50	mm (riduaione	2006 dei valori li	mita)	NO	
j Element			r opera correis c	irulian e con sp	essorminon di 50	min (nauzione a		nice)		FN / 21
	rara	oc.amm					$= 0,60 \times f_{ck}$		15,00	[N/mm ²]
quasi p	permanente	oc.amm					$= 0,45 \times f_{ck}$		11,25	[N/mm ²]
Classe di esposizione ambientale		Specifiche	ambientali			Prescrizioni d	Condizioni ambientali (tab. 4.1///)	Tipologia di armatura e di elemento (tab. C4.1IV)		
XC2	В	agnato, rarar	mente asciutt	0.	Calcestruzz	o armato ord ente immerso	di contenimento liquidi,fondazioni. irmato ordinario o precompresso e immerso in acqua o terreno non aggressivo			barre da c.a a elementi
CALCO	LO COPRI	FERRO: UNI	EN 1992-1	-1 - CLASS	E STRUTTUR	ALE S4	Controllo d	i qualità pro	duzione cls	NO
			barre		max(c _{min,dur} ;c _{min,b} ;10	tolleranza	c -			Diametro inert
						tolleranza	c _{nom} =	interferro	sp. minimo	Diametro merc
$c_{min} + \!\!\! \Delta c_{Vn}$	C _{min,dur}	ø _{max,am}	raggruppate	C _{min,b}	mm)	Δc_{dev}	Cmin + ACdey	interiento	struttura	D _{max}
			n _b	,2	C _{min}	Δc _{dev}	c _{min} +∆c _{dev}	508 35		D _{max}
[mm]	[mm]	[mm]	n _b [-]	[mm]	c _{min} [mm]	[mm]	[mm]	[mm]	struttura [mm]	D _{max} [mm]
[mm]	[mm] 60	[mm] 20	n _b [-] 2	[mm] 34	c _{min} [mm] 60	[mm] ±10	[mm] 70±10	508 35		990 900
[mm] 60 60	[mm] 60 60	[mm] 20 20	n _b [-]	[mm] 34 34	c _{min} [mm] 60 60	[mm] ±10 ±10	[mm] 70±10 70±10	[mm]	[mm]	[mm]
[mm]	[mm] 60	[mm] 20	n _b [-] 2	[mm] 34 34 C	c _{min} [mm] 60 60 opriferro c _{nom}	[mm] ±10 ±10 da adottare	[mm] 70±10 70±10 70±10	[mm]	[mm]	[mm]
[mm] 60 60	[mm] 60 60	[mm] 20 20	n _b [-] 2	[mm] 34 34 C	c _{min} [mm] 60 60	[mm] ±10 ±10 da adottare	[mm] 70±10 70±10 70±10	[mm]	[mm]	[mm]
[mm] 60 60	[mm] 60 60	[mm] 20 20	n _b [-] 2	[mm] 34 34 C DI CONSIS	c _{min} [mm] 60 60 opriferro c _{nom}	[mm] ±10 ±10 da adottare	[mm] 70±10 70±10 70±10 70±10 al cono di Al	[mm]	[mm]	[mm]
[mm] 60 60 Δc _{dur,add}	[mm] 60 60 0	[mm] 20 20 [mm]	n _b [-] 2 2 CLASSE Abbassame	[mm] 34 34 C DI CONSIS	c _{min} [mm] 60 60 copriferro c _{nom} t	[mm] ±10 ±10 da adottare assamento a	[mm] 70±10 70±10 70±10 Al cono di Al	[mm] 100 prams oplicazioni ciclopici, Par	[mm] 600	[mm]
[mm] 60 60 ΔC _{dur,add} Classe di consistenza	[mm] 60 60 0	[mm] 20 20 [mm]	n _b [-] 2 2 CLASSE Abbassame	[mm] 34 34 C DI CONSIS into al cono m) 0 a 210	c _{min} [mm] 60 60 copriferro c _{nom} t	[mm] ±10 ±10 da adottare assamento a	[mm] 70±10 70±10 70±10 11 cono di Al Ap erticali, Getti pa, Strutture	[mm] 100 prams oplicazioni ciclopici, Par	[mm] 600	[mm] 32
[mm] 60 60 ΔC _{dur,add} Classe di consistenza	[mm] 60 60 0	[mm] 20 20 [mm]	n _b [-] 2 2 CLASSE Abbassame	[mm] 34 34 C DI CONSIS into al cono m) 0 a 210 DEFORMA	c _{min} [mm] 60 60 opriferro c _{nom} TENZA - Abba	[mm] ±10 ±10 da adottare assamento a	[mm] 70±10 70±10 70±10 11 cono di Al Ap erticali, Getti pa, Strutture	[mm] 100 prams oplicazioni ciclopici, Par	[mm] 600	[mm] 32
[mm] 60 60 $\Delta C_{dur,add}$ C lasse di consistenza $S4$ ε_{c2}	[mm] 60 60 0 Denominazio	[mm] 20 20 [mm] one corrente	n _b [-] 2 2 CLASSE Abbassame (m	[mm] 34 34 C DI CONSIS into al cono m) 0 a 210 DEFORMA	c _{min} [mm] 60 60 opriferro c _{nom} TENZA - Abba	[mm] ±10 ±10 da adottare assamento a	[mm] 70±10 70±10 70±10 11 cono di Al Ap erticali, Getti pa, Strutture	[mm] 100 prams oplicazioni ciclopici, Par	[mm] 600 eti contro terra,	[mm] 32
[mm] 60 60 $\Delta C_{dur,add}$ $Classe di consistenza$ $S4$ ε_{c2} ε_{cu}	[mm] 60 60 0 Denominazio Deformazio	[mm] 20 20 [mm] one corrente ida ne limite del	n _b [-] 2 2 CLASSE Abbassame (m) da 160	[mm] 34 34 C DI CONSIS Into al cono m) Da 210 DEFORMA	c _{min} [mm] 60 60 copriferro c _{nom} TENZA - Abba Plinti, Pilast	[mm] ±10 ±10 da adottare assamento a	[mm] 70±10 70±10 70±10 11 cono di Al Ap erticali, Getti pa, Strutture	[mm] 100 prams oplicazioni ciclopici, Par	[mm] 600 eti contro terra, ntercapedini -2,00 %	[mm] 32
[mm] 60 60 $\Delta C_{dur,add}$ $Classe di consistenza$ $S4$ ε_{c2} ε_{cu}	[mm] 60 60 0 Denominazio	[mm] 20 20 [mm] one corrente ida ne limite del	n _b [-] 2 2 CLASSE Abbassame (m) da 160	[mm] 34 34 C DI CONSIS Into al cono m) Da 210 DEFORMA	c _{min} [mm] 60 60 copriferro c _{nom} TENZA - Abba Plinti, Pilast	[mm] ±10 ±10 da adottare assamento a	[mm] 70±10 70±10 70±10 11 cono di Al Ap erticali, Getti pa, Strutture	[mm] 100 prams oplicazioni ciclopici, Par	[mm] 600 eti contro terra, ntercapedini -2,00 %	[mm] 32
[mm] 60 60 $\Delta c_{dur,add}$ $Classe di consistenza$ $S4$ ε_{c2} ε_{cu} Legame	[mm] 60 60 0 Denominazio Deformazio	[mm] 20 20 [mm] one corrente ida ne limite del	n _b [-] 2 2 CLASSE Abbassame (m) da 160	[mm] 34 34 C DI CONSIS Into al cono m) Da 210 DEFORMA	c _{min} [mm] 60 60 copriferro c _{nom} TENZA - Abba Plinti, Pilast	[mm] ±10 ±10 da adottare assamento a	[mm] 70±10 70±10 70±10 11 cono di Al Ap erticali, Getti pa, Strutture	[mm] 100 prams oplicazioni ciclopici, Par	[mm] 600 eti contro terra, ntercapedini -2,00 %	[mm] 32
[mm] 60 60 $\Delta C_{dur,add}$ $Classe di consistenza$ $S4$ ε_{c2} ε_{cu} Legame $\frac{16}{14}$ $\frac{1}{6}$	[mm] 60 60 0 Denominazio Deformazio	[mm] 20 20 [mm] one corrente ida ne limite del	n _b [-] 2 2 CLASSE Abbassame (m) da 160	[mm] 34 34 C DI CONSIS Into al cono m) Da 210 DEFORMA	c _{min} [mm] 60 60 copriferro c _{nom} TENZA - Abba Plinti, Pilast	[mm] ±10 ±10 da adottare assamento a	[mm] 70±10 70±10 70±10 Apperticali, Gettipa, Strutture	[mm] 100 prams pplicazioni ciclopici, Parr faccia vista, I	[mm] 600 eti contro terra, ntercapedini -2,00 % -3,50 %	[mm] 32 , Platee, Getti con
[mm] 60 60 ΔCdur,add Classe di consistenza S4 ε _{c2} ε _{cu} Legame	[mm] 60 60 0 Denominazio Deformazio	[mm] 20 20 [mm] one corrente ida ne limite del	n _b [-] 2 2 CLASSE Abbassame (m) da 160	[mm] 34 34 C DI CONSIS Into al cono m) Da 210 DEFORMA	c _{min} [mm] 60 60 copriferro c _{nom} TENZA - Abba Plinti, Pilast	[mm] ±10 ±10 da adottare assamento a	[mm] 70±10 70±10 70±10 11 cono di Al Ap erticali, Getti pa, Strutture	[mm] 100 prams pplicazioni ciclopici, Parr faccia vista, I	[mm] 600 eti contro terra, ntercapedini -2,00 % -3,50 %	[mm] 32
[mm] 60 60 $\Delta c_{dur,add}$ $Classe di consistenza$ $S4$ ε_{c2} ε_{cu} E_{c2} E_{cu} E_{c2} E_{cu} E_{c2} E_{cu} E_{c2} E_{cu} E_{c3} E_{c4} E_{c4} E_{c5} E_{c6} E_{c6} E_{c7} E_{c8} E_{c9} E_{c	[mm] 60 60 0 Denominazio Deformazio	[mm] 20 20 [mm] one corrente ida ne limite del	n _b [-] 2 2 CLASSE Abbassame (m) da 160	[mm] 34 34 C DI CONSIS Into al cono m) Da 210 DEFORMA	c _{min} [mm] 60 60 copriferro c _{nom} TENZA - Abba Plinti, Pilast	[mm] ±10 ±10 da adottare assamento a	[mm] 70±10 70±10 70±10 Apperticali, Gettipa, Strutture	[mm] 100 prams ciclopici, Parr faccia vista, I	[mm] 600 eti contro terra, ntercapedini -2,00 % -3,50 % per	[mm] 32 , Platee, Getti con $\varepsilon_c \le \varepsilon_{c2}$
[mm] 60 60 $\Delta c_{dur,add}$ $Classe di consistenza$ $S4$ ε_{c2} ε_{cu} E_{c2} E_{cu} E_{c2} E_{cu} E_{c2} E_{cu} E_{c2} E_{cu} E_{c3} E_{c4} E_{c4} E_{c5} E_{c6} E_{c6} E_{c7} E_{c8} E_{c9} E_{c	[mm] 60 60 0 Denominazio Deformazio	[mm] 20 20 [mm] one corrente ida ne limite del	n _b [-] 2 2 CLASSE Abbassame (m) da 160	[mm] 34 34 C DI CONSIS Into al cono m) Da 210 DEFORMA	c _{min} [mm] 60 60 copriferro c _{nom} TENZA - Abba Plinti, Pilast	[mm] ±10 ±10 da adottare assamento a	[mm] 70±10 70±10 70±10 Apperticali, Gettipa, Strutture	[mm] 100 prams pplicazioni ciclopici, Parr faccia vista, I	[mm] 600 eti contro terra, ntercapedini -2,00 % -3,50 %	[mm] 32 , Platee, Getti con
[mm] 60 60 ΔC _{dur,add} Classe di consistenza S4 ε _{c2} ε _{cu} Legame 16 14 12 12 28 10	[mm] 60 60 0 Denominazio Deformazio	[mm] 20 20 [mm] one corrente ida ne limite del	n _b [-] 2 2 CLASSE Abbassame (m) da 160	[mm] 34 34 C DI CONSIS Into al cono m) Da 210 DEFORMA	c _{min} [mm] 60 60 copriferro c _{nom} TENZA - Abba Plinti, Pilast	[mm] ±10 ±10 da adottare assamento a	[mm] 70±10 70±10 70±10 Apperticali, Gettipa, Strutture	[mm] 100 prams ciclopici, Parr faccia vista, I	[mm] 600 eti contro terra, ntercapedini -2,00 % -3,50 % per	[mm] 32 , Platee, Getti con $\varepsilon_c \le \varepsilon_{c2}$
[mm] 60 60 ΔCdur,add Classe di consistenza S4 \$\xi_{cu}\$ Legame 16 14 12 12 12 18 10 19 10 10 10 10 10 10 10 10 10 10 10 10 10	[mm] 60 60 0 Denominazio Deformazio	[mm] 20 20 [mm] one corrente ida ne limite del	n _b [-] 2 2 CLASSE Abbassame (m) da 160	[mm] 34 34 C DI CONSIS Into al cono m) Da 210 DEFORMA	c _{min} [mm] 60 60 copriferro c _{nom} TENZA - Abba Plinti, Pilast	[mm] ±10 ±10 da adottare ssamento a ri, Strutture v pom E DEL MATI	[mm] 70±10 70±10 70±10 Apperticali, Gettipa, Strutture	[mm] 100 prams ciclopici, Parr faccia vista, I	[mm] 600 eti contro terra, ntercapedini -2,00 % -3,50 % per	[mm] 32 , Platee, Getti con $\varepsilon_c \le \varepsilon_{c2}$
[mm] 60 60 ΔCdur,add Classe di consistenza S4 ε _{c2} ε _{cu} Legame 16 14 12 12 12 18 10 18 18 10 19 4	[mm] 60 60 0 Denominazio Flu Deformazio costitutivo	[mm] 20 20 [mm] one corrente ida ne limite del	n _b [-] 2 2 CLASSE Abbassame (m da 160 tratto para	[mm] 34 34 C DI CONSIS Into al cono m) Da 210 DEFORMA	c _{min} [mm] 60 60 copriferro c _{nom} TENZA - Abba Plinti, Pilast	[mm] ±10 ±10 da adottare assamento a	[mm] 70±10 70±10 70±10 Apperticali, Gettipa, Strutture	[mm] 100 prams ciclopici, Parr faccia vista, I	[mm] 600 eti contro terra, ntercapedini -2,00 % -3,50 % per	[mm] 32 , Platee, Getti con $\varepsilon_c \le \varepsilon_{c2}$

Classe di re			ONDAZIONI						C25/30	[N/mm ²]
`arattorictic	che del calces	truzzo							C25/30	[IV/mm]
				ciono aubia					30	[N/2]
			ca a compres							[N/mm ²]
			ca a compres	sione cilinai	ica		6-10		25,00	[N/mm²]
	Resistenza						= $fck+8$ = $0.3 \times f_{ck}^{2/3}$		33,00	[N/mm²]
f _{ctm}			zione sempli						2,56	[N/mm²]
			zione per fle				= 1,2 × f _{ctm}		3,08	[N/mm²]
(35,943)			ca a trazione				$= 0.7 \times f_{ctm}$		1,80	[N/mm²]
		=0			za (ø < 32 mn	2.50	= $2,2 \times \eta \times f_{ctk}$		4,04	[N/mm²]
		=		ca di aderen	za in zona tes		$= f_{bk} / 1,50$		2,69	[N/mm²]
	Modulo elas					= 22000	$0 \times [f_{cm}/10]^{0,3}$		31.476	[N/mm²]
1,000	Coefficiente	dilatazione	e termica						1,00E-05	[°C ⁻¹]
Resistenze d										ī
α_{cc}	Coefficiente	riduttivo pe	er le resister	ize a lunga	durata				0,85	
γс	Coefficiente	parziale si	curezza del c	calcestruzzo					1,50	
f_{cd}	Resistenza	di calcolo a	compression	ne			$= \alpha_{cc} \times f_{ck} / \gamma_{c}$		14,17	[N/mm ²]
f* _{cd}	Resistenza	di calcolo a	compression	ne elementi	piani e con sp	< 50 mm	$= 0.80 \times f_{cd}$		11,33	[N/mm ²]
\mathbf{f}_{ctd}	Resistenza	di calcolo a	trazione allo	SLU			$= f_{ctk}/\gamma_c$		1,20	[N/mm ²]
f_{bd}	Resistenza	tangenziale	e di aderenza	di calcolo			$= f_{bk}/\gamma_c$		2,69	[N/mm ²]
f* _{bd}	Resistenza	tangenziale	di aderenza	di calcolo i	n zona tesa		= f^*_{bk}/γ_c		1,80	[N/mm ²]
ensione an	nmissibile pe	r combinazio	one:							
☐ Elementi	piani (solette,pa	areti) gettati i	n opera con cls o	rdinari e con sp	essori minori di 50	mm (riduzione	20% dei valori li	mite)	NO	
	гага	σ _{c.amm}					$= 0,60 \times f_{ck}$		15,00	[N/mm ²]
quasi p	permanente						$= 0,45 \times f_{ck}$		11,25	[N/mm ²]
Classe di esposizione ambientale		Specifiche	ambientali			Prescrizioni	Condizioni ambientali (tab. 4.1///)	Tipologia di armatura e di elemento (tab. C4.1IV)		
XC2	В	agnato, rara	mente asciutto	o.		o armato ord	linario o preco o in acqua o t	ompresso	Ordinarie	barre da c.a al elementi
CALCO	LO COPRIF	ERRO: UN	I EN 1992-1	-1 - CLASS	E STRUTTUR	ALE S4	Controllo d	i qualità pro	duzione cls	NO
			barre		max(c _{min,dur} ;c _{min,b} ;10					Ditititi
			raggruppate	C _{min,b}	mm)	tolleranza ∆C _{dev}	$C_{nom} = C_{min} + \Delta C_{dev}$	interferro	sp. minimo struttura	Diametro inerti D _{max}
c _{min} +∆c _{Vn}	C _{min,dur}	Ø _{max,arm}	n _b		C _{min}				Structura	- max
C _{min} +∆C _{Vn}	[mm]	ø _{max,arm}	n _b [-]	[mm]	c _{min} [mm]	[mm]	[mm]	[mm]	[mm]	[mm]
				[mm] 29			2230200 1 2300000		[mm]	[mm]
[mm]	[mm]	[mm]	[-]		[mm]	[mm]	[mm]	[mm]		
[mm] 25	[mm] 25	[mm] 20	[-]	29	[mm] 29	[mm] ±10 ±10	[mm] 39±10		[mm]	[mm]
[mm] 25 25	[mm] 25 25	[mm] 20 10	[-] 2 1	29 10	[mm] 29 25	[mm] ±10 ±10 da adottare	[mm] 39±10 35±10 35±10	100	[mm]	[mm]
[mm] 25 25 ΔCdur,add	[mm] 25 25	[mm] 20 10 [mm]	[-] 2 1	29 10 C DI CONSIS	[mm] 29 25 opriferro c _{nom} o	[mm] ±10 ±10 da adottare	[mm] 39±10 35±10 35±10 al cono di Al	100	[mm]	[mm]
[mm] 25 25 $\Delta C_{dur,add}$	[mm] 25 25 0	[mm] 20 10 [mm]	[-] 2 1 CLASSE Abbassame	29 10 C DI CONSIS	[mm] 29 25 opriferro c _{nom} o	[mm] ±10 ±10 da adottare essamento a	[mm] 39±10 35±10 35±10 al cono di Al	100 Drams oplicazioni ciclopici, Par	[mm] 520	[mm]
[mm] 25 25 ΔC _{dur,add} Classe di onsistenza	[mm] 25 25 0	[mm] 20 10 [mm]	[-] 2 1 CLASSE Abbassame	29 10 CDI CONSIS	[mm] 29 25 opriferro c _{nom} o	[mm] ±10 ±10 da adottare essamento a	[mm] 39±10 35±10 35±10 al cono di Al Ap rerticali, Getti	100 Drams oplicazioni ciclopici, Par	[mm] 520	[mm] 20
[mm] 25 25 ΔC _{dur,add} Classe di onsistenza	[mm] 25 25 0	[mm] 20 10 [mm]	[-] 2 1 CLASSE Abbassame	29 10 C DI CONSIS nto al cono m) 0 a 210 DEFORMA	[mm] 29 25 opriferro C _{nom} (TENZA - Abba	[mm] ±10 ±10 da adottare essamento a	[mm] 39±10 35±10 35±10 al cono di Al Ap rerticali, Getti	100 Drams oplicazioni ciclopici, Par	[mm] 520	[mm] 20
[mm] 25 25 ΔCdur,add Classe di onsistenza S4	[mm] 25 25 0	[mm] 20 10 [mm] one corrente ida	[-] 2 1 CLASSE Abbassame (m	29 10 C DI CONSIS nto al cono m) 0 a 210 DEFORMA	[mm] 29 25 opriferro C _{nom} (TENZA - Abba	[mm] ±10 ±10 da adottare essamento a	[mm] 39±10 35±10 35±10 al cono di Al Ap rerticali, Getti	100 Drams oplicazioni ciclopici, Par	[mm] 520 eti contro terra ntercapedini -2,00 %	[mm] 20
[mm] 25 25 ΔC _{dur,add} Classe di onsistenza S4 ε _{c2} ε _{cu}	[mm] 25 25 0 Denominazio Flu Deformazio	[mm] 20 10 [mm] one corrente ida ne limite de ne ultima	[-] 2 1 CLASSE Abbassame (m	29 10 C DI CONSIS nto al cono m) 0 a 210 DEFORMA bolico	[mm] 29 25 opriferro Cnom (TENZA - Abba Plinti, Pilasti	[mm] ±10 ±10 da adottare essamento a	[mm] 39±10 35±10 35±10 al cono di Al Ap rerticali, Getti	100 Drams oplicazioni ciclopici, Par	[mm] 520 eti contro terra	[mm] 20
$[mm]$ 25 25 $\Delta C_{dur,add}$ $Classe \ disconsistenza$ $S4$ ε_{c2} ε_{cu}	[mm] 25 25 0 Denominazio Flu Deformazio	[mm] 20 10 [mm] one corrente ida ne limite de ne ultima	[-] 2 1 CLASSE Abbassame (m) da 160	29 10 C DI CONSIS nto al cono m) 0 a 210 DEFORMA bolico	[mm] 29 25 opriferro Cnom (TENZA - Abba Plinti, Pilasti	[mm] ±10 ±10 da adottare essamento a	[mm] 39±10 35±10 35±10 al cono di Al Ap rerticali, Getti	100 Drams oplicazioni ciclopici, Par	[mm] 520 eti contro terra ntercapedini -2,00 %	[mm] 20
$[mm]$ 25 25 $\Delta C_{dur,add}$ Classe di onsistenza S4 ϵ_{c2} ϵ_{cu} Legame	[mm] 25 25 0 Denominazio Flu Deformazio	[mm] 20 10 [mm] one corrente ida ne limite de ne ultima	[-] 2 1 CLASSE Abbassame (m) da 160	29 10 C DI CONSIS nto al cono m) 0 a 210 DEFORMA bolico	[mm] 29 25 opriferro Cnom (TENZA - Abba Plinti, Pilasti	[mm] ±10 ±10 da adottare ssamento a	[mm] 39±10 35±10 35±10 al cono di Al Ap rerticali, Getti pa, Strutture	100 Drams Oplicazioni ciclopici, Parrfaccia vista, I	[mm] 520 eti contro terra ntercapedini -2,00 % -3,50 %	[mm] 20 Platee, Getti con
$[mm]$ 25 25 $\Delta C_{dur,add}$ $Classe di onsistenza$ $S4$ ε_{c2} ε_{cu} $Legame$ 16 14 12	[mm] 25 25 0 Denominazio Flu Deformazio	[mm] 20 10 [mm] one corrente ida ne limite de ne ultima	[-] 2 1 CLASSE Abbassame (m) da 160	29 10 C DI CONSIS nto al cono m) 0 a 210 DEFORMA bolico	[mm] 29 25 opriferro Cnom (TENZA - Abba Plinti, Pilasti	[mm] ±10 ±10 da adottare ssamento a	[mm] 39±10 35±10 35±10 al cono di Al Ap rerticali, Getti	100 Drams Oplicazioni ciclopici, Parrfaccia vista, I	[mm] 520 eti contro terra ntercapedini -2,00 %	[mm] 20
[mm] 25 25 $\Delta c_{dur,add}$ $Classe di consistenza$ $S4$ ϵ_{c2} ϵ_{cu} Legame ϵ_{c2} ϵ_{cd}	[mm] 25 25 0 Denominazio Flu Deformazio	[mm] 20 10 [mm] one corrente ida ne limite de ne ultima	[-] 2 1 CLASSE Abbassame (m) da 160	29 10 C DI CONSIS nto al cono m) 0 a 210 DEFORMA bolico	[mm] 29 25 opriferro Cnom (TENZA - Abba Plinti, Pilasti	[mm] ±10 ±10 da adottare ssamento a	[mm] 39±10 35±10 35±10 al cono di Al Ap rerticali, Getti pa, Strutture	100 prams pplicazioni ciclopici, Parr faccia vista, 1	[mm] 520 eti contro terra ntercapedini -2,00 % -3,50 % per	[mm] 20 Platee, Getti con $\varepsilon_c \le \varepsilon_{c2}$
$[mm]$ 25 25 $\Delta C_{dur,add}$ $Classe di onsistenza$ $S4$ ε_{c2} ε_{cu} $Legame$ 16 14 12	[mm] 25 25 0 Denominazio Flu Deformazio	[mm] 20 10 [mm] one corrente ida ne limite de ne ultima	[-] 2 1 CLASSE Abbassame (m) da 160	29 10 C DI CONSIS nto al cono m) 0 a 210 DEFORMA bolico	[mm] 29 25 opriferro Cnom (TENZA - Abba Plinti, Pilasti	[mm] ±10 ±10 da adottare ssamento a	[mm] 39±10 35±10 35±10 al cono di Al Ap rerticali, Getti pa, Strutture	100 Drams Oplicazioni ciclopici, Parrfaccia vista, I	[mm] 520 eti contro terra ntercapedini -2,00 % -3,50 %	[mm] 20 Platee, Getti con
$ \begin{bmatrix} [mm] \\ 25 \\ 25 \\ \Delta C_{dur,add} \end{bmatrix} $ $ Classe \ di consistenza $ $ S4 $ $ \mathcal{E}_{c2} $ $ \mathcal{E}_{cu} $ $ Legame $ $ \begin{bmatrix} 16 \\ 14 \\ 12 \\ 27 \end{bmatrix} $ $ \begin{bmatrix} 10 \\ 8 \\ 6 \end{bmatrix} $ $ \begin{bmatrix} 6 \\ 14 \\ 12 \\ 27 \end{bmatrix} $	[mm] 25 25 0 Denominazio Flu Deformazio	[mm] 20 10 [mm] one corrente ida ne limite de ne ultima	[-] 2 1 CLASSE Abbassame (m) da 160	29 10 C DI CONSIS nto al cono m) 0 a 210 DEFORMA bolico	[mm] 29 25 opriferro Cnom (TENZA - Abba Plinti, Pilasti	[mm] ±10 ±10 da adottare ssamento a	[mm] 39±10 35±10 35±10 al cono di Al Ap rerticali, Getti pa, Strutture	100 prams pplicazioni ciclopici, Parr faccia vista, 1	[mm] 520 eti contro terra ntercapedini -2,00 % -3,50 % per	[mm] 20 Platee, Getti con $\varepsilon_c \le \varepsilon_{c2}$
$ \begin{bmatrix} [mm] \\ 25 \\ 25 \\ \Delta C_{dur,add} \end{bmatrix} $ $ Classe \ di consistenza $ $ S4 $ $ \mathcal{E}_{c2} $ $ \mathcal{E}_{cu} $ $ Legame $ $ \begin{bmatrix} 16 \\ 14 \\ 12 \\ 27 \end{bmatrix} $ $ \begin{bmatrix} 10 \\ 8 \\ 8 \end{bmatrix} $ $ \begin{bmatrix} 6 \\ 4 \\ 4 \end{bmatrix} $	[mm] 25 25 0 Denominazio Flu Deformazio	[mm] 20 10 [mm] one corrente ida ne limite de ne ultima	[-] 2 1 CLASSE Abbassame (m) da 160	29 10 C DI CONSIS nto al cono m) 0 a 210 DEFORMA bolico	[mm] 29 25 opriferro Cnom (TENZA - Abba Plinti, Pilasti	[mm] ±10 ±10 da adottare ssamento a	[mm] 39±10 35±10 35±10 al cono di Al Ap rerticali, Getti pa, Strutture	100 prams pplicazioni ciclopici, Parr faccia vista, 1	[mm] 520 eti contro terra ntercapedini -2,00 % -3,50 % per	[mm] 20 Platee, Getti con $\varepsilon_c \le \varepsilon_{c2}$
[mm] 25 25 ΔC _{dur,add} Classe di onsistenza S4 ε _{c2} ε _{cu} Legame 16 14 12 27 12 28 10 8 b 6	[mm] 25 25 0 Denominazio Flu Deformazio	[mm] 20 10 [mm] one corrente ida ne limite de ne ultima	[-] 2 1 CLASSE Abbassame (m) da 160	29 10 C DI CONSIS nto al cono m) 0 a 210 DEFORMA bolico	[mm] 29 25 opriferro Cnom (TENZA - Abba Plinti, Pilasti	[mm] ±10 ±10 da adottare ssamento a	[mm] 39±10 35±10 35±10 al cono di Al Ap rerticali, Getti pa, Strutture	100 prams pplicazioni ciclopici, Parr faccia vista, 1	[mm] 520 eti contro terra ntercapedini -2,00 % -3,50 % per	[mm] 20 Platee, Getti con $\varepsilon_c \le \varepsilon_{c2}$

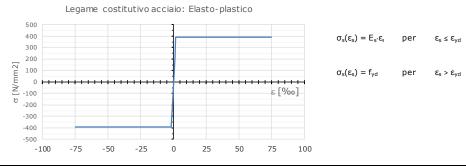
A.2 - 2.1.14. CALCESTRUZZO PER PALI

Classe di re	esistenza								C25/30	[N/mm ²]
	che del calces	truzzo							•	
R _{ck}		caratteristic	a a compres	sione cubica	9				30	[N/mm ²]
f _{dk}		caratteristic							25,00	[N/mm ²]
f _{cm}		cilindrica me	10.5 300000000000000000000000000000000000	Joine cillina	ica		= fck+8		33,00	[N/mm ²]
f _{ctm}		media a tra:		ice			$= 0.3 \times f_{ck}^{2/3}$		2,56	[N/mm ²]
		media a tra:					$= 1,2 \times f_{ctm}$		3,08	[N/mm ²]
f _{cfm} f _{ctk}		caratteristic					$= 0.7 \times f_{ctm}$ $= 0.7 \times f_{ctm}$		1,80	[N/mm ²]
					za (ø < 32 mn	۵۱	$= 0,7 \times r_{ctm}$ $= 2,2 \times \eta \times f_{ctk}$		4,04	[N/mm ²]
f _{bk}					za in zona tes				2,69	-
f* _{bk}		stico istanta		ca ui aueieii	Za III Zolia tes		$= f_{bk} / 1,50$ $0 \times [f_{cm}/10]^{0,3}$		31.476	[N/mm ²]
E _{om}		dilatazione				= 22000	0^[lam/10]		1,00E-05	[N/mm²]
α Resistenze		dilatazione	termica						1,000-05	[°C ⁻¹]
					J				0.05	1
α_{cc}		riduttivo pe			durata				0,85	_
γc		parziale sic					w.c. /		1,50	
f _{cd}		di calcolo a	10753				$= \alpha_{cc} \times f_{ck} / \gamma_{c}$	1	14,17	[N/mm ²]
f* _{cd}					piani e con sp	. < 50 mm	$= 0.80 \times f_{cd}$		11,33	[N/mm ²]
f _{ctd}		di calcolo a					$= f_{ctk}/\gamma_c$		1,20	[N/mm²]
f _{bd}		tangenziale					$= f_{bk}/\gamma_c$		2,69	[N/mm ²]
f* _{bd}		tangenziale		a di calcolo i	n zona tesa		= f^*_{bk}/γ_c	8	1,80	[N/mm ²]
	mmissibile pe								27.0	
☐ Elementi	piani (solette, pa	areti) gettati ir	n opera con cls o	ordinari e con sp	essoriminori di 50	mm (riduzione		mite)	NO	
	rara	oc.amm					$= 0,60 \times f_{ck}$		15,00	[N/mm²]
quasi	permanente	oc.amm					$= 0,45 \times f_{ck}$		11,25	[N/mm²]
Classe di esposizione ambientale		Specifiche	ambientali			Prescrizioni	Condizioni ambientali (tab. 4.1/ll)	Tipologia di armatura e di elemento (tab. C4.1IV)		
XC2	В	agnato, rarar	mente asciutt	0.		o armato ord	linario o prec o in acqua o t	Ordinarie	barre da c.a al elementi	
CALCO	OLO COPPII	EEDDO: IINI	T EN 1002-1	-1 - CLASS	E STRUTTUR	AI E SA	Controllo	li auglità pr	oduzione cls	NO
CALCO	JEO COPKI	ERRO. UNI	barre	-1 - CLASS	max(c _{min,dur} ;c _{min,b} ;10		Controllo	ii qualita pro	duzione cis	
$c_{min} + \! \Delta c_{Vn}$	C _{min,dur}	Ø _{max,am}	raggruppate n _b	C _{min,b}	mm) C _{min}	tolleranza ∆C _{dev}	c _{nom} = c _{min} +∆c _{dev}	interferro	sp. minimo struttura	Diametro inert D _{max}
[mm]	[mm]	[mm]	[-]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
60	60	20	2	34	60	±10	70±10	100	600	32
60	60	20	2	34	60	±10	70±10	100	000	32
$\Delta c_{dur,add}$	0	[mm]		С	opriferro c _{nom}	da adottare	70±10			
			CLASSE	DI CONSIS	TENZA - Abba	assamento a	al cono di Al	orams		
Classe di consistenza	Denominazio	one corrente		ento al cono m)			Aļ	oplicazioni		
S4	Flu	ida	da 160) a 210	Plinti, Pilast		erticali, Getti pa, Strutture			, Platee, Getti con
	-			DEFORMA	ZIONE LIMIT	E DEL MAT	ERIALE			
ε _{c2}	Deformazio	ne limite del	l tratto para	bolico					-2,00 ‰	
ϵ_{cu}	Deformazio	ne ultima							-3,50 %	
									· · · · · · · · · · · · · · · · · · ·	J
Legame	costitutivo	calcestruzz	zo: Parabola	-rettangolo						
16					7	σ.($(\epsilon_c) = 2 \cdot f_{cd} / \epsilon_{c2} \cdot [\epsilon_c]$	ε _c -ε _c ² /(2·ε ₋₂)1	per	$\varepsilon_c \le \varepsilon_{c2}$
14						J _C (1	-c,a, -c2 L		F 51	
14		/								
14 -								$\sigma_{-}(\varepsilon_{-}) = f_{-}$	per	F-> F-2
14 -								$\sigma_{c}(\epsilon_{c}) = f_{cd}$	per	$\varepsilon_{c} > \varepsilon_{c2}$
14								$\sigma_{c}(\varepsilon_{c}) = f_{cd}$	per	$\varepsilon_{\rm c} > \varepsilon_{\rm c2}$
14 - 12 - [Zmm/N] b 6 -								$\sigma_{c}(\varepsilon_{c}) = f_{cd}$	per	ε _c > ε _{c2}
14 - 12 - 10 - 8 - 10 6 - 4	% -0,05%	-0,10% -0,15	5% -0,20%	-0,25% -0,3	0% -0,35% -1	ε 0,40%		$\sigma_{c}(\epsilon_{c}) = f_{cd}$	per	ε _c > ε _{c2}

A.2 - 2.1.15. CALCESTRUZZO PER FONDAZIONI

Classe di re	cal cestru esistenza								C30/37	[N/mm ²]
	che del calces	struzzo							233/3/	[14/11111]
R _{ck}			a a compres	sione cubica					37	[N/mm ²]
f _{dk}			1.5	sione cilindr					30,00	[N/mm ²]
		cilindrica me	-	isione cilinai	icu		= f _{ck} +8		38,00	[N/mm ²]
f _{am}		media a tra		ico			$= 0.3 \times f_{ck}^{2/3}$		2,90	
f _{ctm}										[N/mm ²]
f _{efm}		media a tra					= 1,2 × f _{ctm}		3,48	[N/mm ²]
f _{ctk}		caratteristic			- ($= 0.7 \times f_{ctm}$		2,03	[N/mm ²]
f _{bk}					za (ø < 32 mm		= $2,2 \times \eta \times f_{ctk}$		4,56	[N/mm ²]
f* _{bk}		E21		ca di aderen	za in zona tes		$= f_{bk} / 1,50$		3,04	[N/mm ²]
E _{σm}		stico istanta e dilatazione				= 22000)×[f _{cm} /10] ^{0,3}		32.837	[N/mm ²]
Resistenze d		dilatazione	termica						1,00E-05	[°C ⁻¹]
		riduttivo pe	er le resister	nze a lunga (durata				0,85	1
γc		parziale si		-					1,50	
f_{cd}	Resistenza	di calcolo a	compression	ne			$= \alpha_{cc} \times f_{ck} / \gamma_{c}$		17,00	[N/mm ²]
f* cd	Resistenza	di calcolo a	compression	ne elementi i	piani e con sp.	. < 50 mm	$= 0.80 \times f_{cd}$		13,60	[N/mm ²]
f_{ctd}	Resistenza	di calcolo a	trazione allo	SLU			$= f_{ctk}/\gamma_c$		1,35	[N/mm ²]
f_{bd}	Resistenza	tangenziale	di aderenza	a di calcolo			$= f_{bk}/\gamma_c$		3,04	[N/mm ²]
f* _{bd}	Resistenza	tangenziale	di aderenza	a di calcolo ir	n zona tesa		= $f*_{bk}/\gamma_c$		2,03	[N/mm ²]
Tensione an	nmissibile pe	er combinazio	ne:							
☐ Elementi	piani (solette,pa	areti) gettati ir	opera con cls o	rdinari e con sp	essori minori di 50	mm (riduzione	20% dei valori li	mite)	NO	
	rara	∇ _{c.amm}					$= 0,60 \times f_{ck}$		18,00	[N/mm ²]
quasip	permanente	⊄c.amm					$= 0.45 \times f_{ck}$		13,50	[N/mm ²]
Classe di esposizione ambientale		Specifiche	ambientali			Prescrizioni	ambientali		Condizioni ambientali (tab. 4.1/II)	Tipologia di armatura e di elemento (tab. C4.1IV)
XC2	В	agnato, rarar	mente asciutt	0.		o armato ord	linario o prec o in acqua o t	ompresso	Ordinarie	barre da c.a. elementi a piasi
CALCO	DLO COPRI	FERRO: UN	EN 1992-1	-1 - CLASS	E STRUTTUR	ALE S3	Controllo d	i qualità pro	duzione cls	NO
$c_{min}+\Delta c_{Vn}$	C _{min,du} r	Ø _{max,arm}	barre raggruppate n _b	C _{min,b}	max(c _{min,dur} ;c _{min,b} ;10 mm) C _{min}	tolleranza ΔC _{dev}	c _{nom} = c _{min} +∆c _{dev}	interferro	sp. minimo struttura	Diametro inert
[mm]	[mm]	[mm]	[-]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
20	20	20	2	34	34	±10	44±10	100	000	22
20	20			5	0	±10	10±10	100	800	32
ΔC _{dur,add}	0	[mm]		С	opriferro c _{nom} o	da adottare	45±10			
			CLASSE	DI CONSIS	TENZA - Abba	ssamento a	al cono di Al	orams		
Classe di consistenza	Denominazio	one corrente	Abbassame (m	nto al cono m)			A	pplicazioni		
S4	Flu	ida	da 160	a 210	Plinti, Pilasti		erticali, Getti pa, Strutture			, Platee, Getti con
				DEFORM	ZIONE LIMIT	E DEL MAT	ERIALE			
								1	-2,00 ‰	
€.~	Deformazio	ne limite del	tratto nara	holico					2,00 /00	
ε _{c2}		ne limite del	tratto para	bolico					-3 50 %	
ε _{c2}	Deformazio Deformazio		tratto para	bolico					-3,50 ‰	
ε _{cu}	Deformazio	ne ultima		bolico - rettangolo					-3,50 ‰	
ε _{cu}	Deformazio	ne ultima							-3,50 ‰	
ε _{cu} Legame	Deformazio	ne ultima					-) 26 / -	-242		
ε _{cu} Legame	Deformazio	ne ultima				σ _c (ε	$\varepsilon_{\rm c}$)=2· $f_{\rm cd}/\varepsilon_{\rm c2}$ ·[i	: _c -ε _c ²/(2·ε _{c2})]	-3,50 ‰	$\varepsilon_c \le \varepsilon_{c2}$
ε _{cu} Legame	Deformazio	ne ultima				$\sigma_{c}(i)$	$\varepsilon_{\rm c}$)=2·f _{cd} / $\varepsilon_{\rm c2}$ ·[i		per	
ε _{cu} Legame	Deformazio	ne ultima				$\sigma_c(i)$	$\epsilon_{\rm c}$)=2·f _{cd} / $\epsilon_{\rm c2}$ ·[i	$s_c - \varepsilon_c^2 / (2 \cdot \varepsilon_{c2})$ $\sigma_c(\varepsilon_c) = f_{cd}$		$\varepsilon_c \le \varepsilon_{c2}$ $\varepsilon_c > \varepsilon_{c2}$
ε _{cu} Legame 18 16 14 7 12 Ε Ε 10	Deformazio	ne ultima				$\sigma_c(\epsilon)$	$\varepsilon_{\rm c}$ =2·f _{cd} / $\varepsilon_{\rm c2}$ ·[s		per	
ε _{cu} Legame 18 16 14 [7] 12 ΕΕΙ 10 10 10 10 10 10 10 10 10 10 10 10 10 1	Deformazio	ne ultima				$\sigma_{c}(i$	$\varepsilon_{\rm c}$)=2·f _{cd} / $\varepsilon_{\rm c2}$ ·[i		per	
ε _{cu} Legame 18 16 14 [7 12 Ε Ε 10 Ν] 8 υ 6	Deformazio	ne ultima				σ _c (ε	$(\epsilon_{c}) = 2 \cdot f_{cd} / \epsilon_{c2} \cdot [i$		per	

A.2 - 2.1.16. CALCESTRUZZO PER ELEVAZIONI (pilastri, travi, setti)

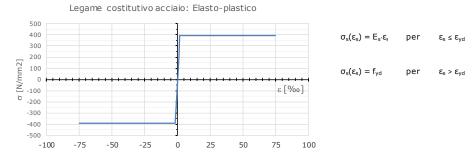

	esistenza								C30/37	[N/mm ²]
Caratteristic	che del calces	struzzo								s 1
R _{ck}		caratteristic	a a compres	sione cubic					37	[N/mm ²]
f _{dk}		caratteristic							30,00	[N/mm ²]
		cilindrica me		Sione cilina	ica		- falc 10			
f _{cm}							= fck+8		38,00	[N/mm ²]
f _{ctm}		media a tra					$= 0.3 \times f_{dk}^{2/3}$		2,90	[N/mm²]
f_{dm}	Resistenza	media a tra	zione per fle	ssione			$= 1,2 \times f_{ctm}$		3,48	[N/mm²]
f_{ctk}	Resistenza	caratteristic	a a trazione				$= 0.7 \times f_{ctm}$		2,03	[N/mm ²]
f_{bk}	Resistenza	tangenziale	caratteristic	a di aderen	za (ø < 32 mm	n) :	= $2,2 \times \eta \times f_{ctk}$		4,56	[N/mm ²]
f* _{bk}	Resistenza	tangenziale	caratteristic	a di aderen	za in zona tes	a	$= f_{bk} / 1,50$		3,04	[N/mm ²]
E _{cm}	Modulo elas	stico istanta	neo			= 22000	$\times [f_{cm}/10]^{0,3}$		32.837	[N/mm ²]
α	Coefficiente	dilatazione	termica						1,00E-05	[°C ⁻¹]
Resistenze	di calcolo									
α_{cc}	Coefficiente	riduttivo pe	er le resister	ze a lunga	durata				0,85	1
γc	Coefficiente	parziale si	urezza del d	alcestruzzo					1,50	1
f _{cd}		di calcolo a					$= \alpha_{cc} \times f_{ck} / \gamma_{c}$		17,00	[N/mm²]
f* _{cd}					piani e con sp.	< 50 mm	$= 0.80 \times f_{cd}$		13,60	[N/mm ²]
					piani e con sp.	50 111111				
f _{ctd}		di calcolo a					$= f_{ctk}/\gamma_c$		1,35	[N/mm ²]
f _{bd}		tangenziale					$= f_{bk}/\gamma_c$		3,04	[N/mm²]
f* _{bd}		tangenziale		di calcolo i	n zona tesa		= f^*_{bk}/γ_c		2,03	[N/mm ²]
	mmissibile pe									
☐ Elementi	piani (solette,pa	areti) gettati ir	opera con cls o	rdinari e con sp	essoriminori di 50	mm (riduzione 2	20% dei valori li	mite)	NO	
	rara	$\sigma_{c.amm}$					$= 0,\!60 \times f_{ck}$		18,00	[N/mm ²]
quasi	permanente	σ _{c.amm}					= $0,45 \times f_{ck}$		13,50	[N/mm ²]
Classe di									Condizioni	Tipologia di
esposizione ambientale		Specifiche	ambientali			Prescrizioni a	ambientali		am bientali (tab. 4.1III)	armatura e di elemento (tab. C4.1IV)
										(tab. 04.5V)
					Calcestruzzo	armato ordir	nario o precoi	mpresso in		
хсз		Umidità r	noderata.			esterni con	superfici		Ordinarie	barre da c.a al
λes		o marca i			esterne riparat	e dalla piogg: da modera		i con umidità	Oramane	elementi
CALC	LO COPRI	FERRO: UN	EN 1992-1	-1 - CLASS	E STRUTTUR/	ALE S4	Controllo d	i qualità pro	duzione cls	NO
			barre	1	max(c _{min,dur} ;c _{min,b} ;10	tolleranza	c _{nom} =		sp. minimo	Diametro inert
$c_{min} + \Delta c_{Vn}$	C _{min,dur}	ø _{max,am}	raggruppate	c _{min,b}	mm)	$\Delta c_{ m dev}$	C _{min} +∆C _{dev}	interferro	struttura	D _{max}
	F1	F	n _b	Feet and T	C _{min}			F7	F2	f3
[mm]	[mm]	[mm]	[-]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
25	25	20	2	29	29	±10	39±10	100	300	16
25 25	25	8	1	8	29 25	±10 ±10	35±10	100	300	16
				8		±10		100	300	16
25	25	8	1	8 C	25	±10 da adottare	35±10 40±10		300	16
25	25	8 [mm]	1	8 DI CONSIS	25 opriferro c _{nom} (±10 da adottare	35±10 40±10 al cono di Al	orams	300	16
25 Δc _{dur,add}	25	8	1 CLASSE	8 DI CONSIS	25 opriferro c _{nom} (±10 da adottare	35±10 40±10 al cono di Al		300	16
25 Δc _{dur,add} Classe di consistenza	25 0	8 [mm]	1 CLASSE Abbassame (m	8 C DI CONSIS nto al cono m)	25 opriferro c _{nom} c TENZA - Abba	±10 da adottare assamento a	35±10 40±10 al cono di Al	orams oplicazioni		16
25 ΔC _{dur,add}	25 0	8 [mm]	1 CLASSE Abbassame (m	8 DI CONSIS	25 opriferro c _{nom} c TENZA - Abba	±10 da adottare essamento a	35±10 40±10 al cono di Al	prams pplicazioni ciclopici, Par	eti contro terra	
25 Δc _{dur,add} Classe di consistenza	25 0	8 [mm]	CLASSE Abbassame (m	8 C DI CONSIS nto al cono m) a 210 DEFORMA	25 opriferro c _{nom} c TENZA - Abba	±10 da adottare assamento a	35±10 40±10 al cono di Al Ap erticali, Getti pa, Strutture	prams pplicazioni ciclopici, Par	eti contro terra ntercapedini	
25 Δc _{dur,add} Classe di consistenza	25 0	8 [mm]	CLASSE Abbassame (m	8 C DI CONSIS nto al cono m) a 210 DEFORMA	25 opriferro c _{nom} o TENZA - Abba Plinti, Pilastr	±10 da adottare assamento a	35±10 40±10 al cono di Al Ap erticali, Getti pa, Strutture	prams pplicazioni ciclopici, Par	eti contro terra	
25 ΔC _{dur,add} Classe di consistenza	25 0	8 [mm]	CLASSE Abbassame (m	8 C DI CONSIS nto al cono m) a 210 DEFORMA	25 opriferro c _{nom} o TENZA - Abba Plinti, Pilastr	±10 da adottare assamento a	35±10 40±10 al cono di Al Ap erticali, Getti pa, Strutture	prams pplicazioni ciclopici, Par	eti contro terra ntercapedini	
$\begin{array}{c} 25 \\ \Delta c_{dur,add} \\ \\ Classe \ di \\ consistenza \\ \\ S4 \\ \\ \epsilon_{c2} \\ \epsilon_{cu} \end{array}$	25 0 Denominazio Flu Deformazio	8 [mm] one corrente iida ne limite del	CLASSE Abbassame (m da 160	8 C DI CONSIS nto al cono m) a 210 DEFORMA polico	25 opriferro c _{nom} (TENZA - Abba Plinti, Pilasti	±10 da adottare assamento a	35±10 40±10 al cono di Al Ap erticali, Getti pa, Strutture	prams pplicazioni ciclopici, Par	eti contro terra ntercapedini -2,00 ‰	
$\begin{array}{c} 25 \\ \Delta c_{dur,add} \\ \\ Classe \ di \\ consistenza \\ \\ S4 \\ \\ \epsilon_{c2} \\ \epsilon_{cu} \\ \\ Legame \end{array}$	25 0	8 [mm] one corrente iida ne limite del	CLASSE Abbassame (m da 160	8 C DI CONSIS nto al cono m) a 210 DEFORMA polico	25 opriferro c _{nom} (TENZA - Abba Plinti, Pilasti	±10 da adottare assamento a	35±10 40±10 al cono di Al Ap erticali, Getti pa, Strutture	prams pplicazioni ciclopici, Par	eti contro terra ntercapedini -2,00 ‰	
$\Delta c_{dur,add}$ Classe di consistenza S4 ϵ_{c2} ϵ_{cu} Legame	25 0 Denominazio Flu Deformazio	8 [mm] one corrente iida ne limite del	CLASSE Abbassame (m da 160	8 C DI CONSIS nto al cono m) a 210 DEFORMA polico	25 opriferro c _{nom} (TENZA - Abba Plinti, Pilasti	±10 da adottare assamento a	35±10 40±10 al cono di Al Ap erticali, Getti pa, Strutture	prams pplicazioni ciclopici, Par	eti contro terra ntercapedini -2,00 ‰	
$\begin{array}{c} 25 \\ \Delta c_{dur,add} \\ \\ Classe \ di \\ consistenza \\ \\ S4 \\ \\ \\ \varepsilon_{c2} \\ \\ \varepsilon_{cu} \\ \\ \\ Legame \end{array}$	25 0 Denominazio Flu Deformazio	8 [mm] one corrente iida ne limite del	CLASSE Abbassame (m da 160	8 C DI CONSIS nto al cono m) a 210 DEFORMA polico	25 opriferro c _{nom} (TENZA - Abba Plinti, Pilasti	±10 da adottare assamento a ri, Strutture v pom	35±10 40±10 al cono di Al Ap erticali, Getti pa, Strutture	prams pplicazioni ciclopici, Par faccia vista, 1	eti contro terra ntercapedini -2,00 ‰	
$\Delta c_{dur,add}$ Classe di consistenza S4 ϵ_{c2} ϵ_{cu} Legame	25 0 Denominazio Flu Deformazio	8 [mm] one corrente iida ne limite del	CLASSE Abbassame (m da 160	8 C DI CONSIS nto al cono m) a 210 DEFORMA polico	25 opriferro c _{nom} (TENZA - Abba Plinti, Pilasti	±10 da adottare assamento a ri, Strutture v pom	35±10 40±10 al cono di Al Ap erticali, Getti pa, Strutture	prams pplicazioni ciclopici, Par faccia vista, 1	eti contro terra ntercapedini -2,00 % -3,50 %	, Platee, Getti con
$\begin{array}{c} 25 \\ \Delta c_{dur,add} \\ \\ Classe \ di \\ consistenza \\ \\ S4 \\ \\ \varepsilon_{cu} \\ \\ \\ Legame \\ \\ 18 \\ 16 \\ 14 \\ \\ \end{array}$	25 0 Denominazio Flu Deformazio	8 [mm] one corrente iida ne limite del	CLASSE Abbassame (m da 160	8 C DI CONSIS nto al cono m) a 210 DEFORMA polico	25 opriferro c _{nom} (TENZA - Abba Plinti, Pilasti	±10 da adottare assamento a ri, Strutture v pom	35±10 40±10 al cono di Al Ap erticali, Getti pa, Strutture	prams pplicazioni ciclopici, Par faccia vista, 1	eti contro terra ntercapedini -2,00 % -3,50 % per	, Platee, Getti con $\epsilon_c \leq \epsilon_{c2}$
$\begin{array}{c} 25 \\ \Delta C_{dur,add} \\ \\ Classe \ di \\ consistenza \\ \\ S4 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	25 0 Denominazio Flu Deformazio	8 [mm] one corrente iida ne limite del	CLASSE Abbassame (m da 160	8 C DI CONSIS nto al cono m) a 210 DEFORMA polico	25 opriferro c _{nom} (TENZA - Abba Plinti, Pilasti	±10 da adottare assamento a ri, Strutture v pom	35±10 40±10 al cono di Al Ap erticali, Getti pa, Strutture	prams pplicazioni ciclopici, Par faccia vista, 1	eti contro terra ntercapedini -2,00 % -3,50 %	, Platee, Getti con
25 ΔC _{dur,add} Classe di consistenza S4 ε _{c2} ε _{cu} Legame 18 16 14 12 12 12 18 10 18 10 18 10 10 10 10 10 10 10 10 10 10 10 10 10	25 0 Denominazio Flu Deformazio	8 [mm] one corrente iida ne limite del	CLASSE Abbassame (m da 160	8 C DI CONSIS nto al cono m) a 210 DEFORMA polico	25 opriferro c _{nom} (TENZA - Abba Plinti, Pilasti	±10 da adottare assamento a ri, Strutture v pom	35±10 40±10 al cono di Al Ap erticali, Getti pa, Strutture	prams pplicazioni ciclopici, Par faccia vista, 1	eti contro terra ntercapedini -2,00 % -3,50 % per	, Platee, Getti con $\epsilon_c \leq \epsilon_{c2}$
$\begin{array}{c} 25 \\ \Delta c_{dur,add} \\ \\ Classe \ di \\ consistenza \\ \\ S4 \\ \\ & \varepsilon_{c2} \\ & \varepsilon_{cu} \\ \\ \\ & Legame \\ & 18 \\ & 16 \\ & 14 \\ & 10 \\ & 10 \\ & 10 \\ \\ & 10 \\ & 10 \\ & 10 \\ \\ \\ & 10 \\ & 10 \\ \\ \\ & 10 \\ \\ \\ & 10 \\ \\ \\ \\ & 10 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	25 0 Denominazio Flu Deformazio	8 [mm] one corrente iida ne limite del	CLASSE Abbassame (m da 160	8 C DI CONSIS nto al cono m) a 210 DEFORMA polico	25 opriferro c _{nom} (TENZA - Abba Plinti, Pilasti	±10 da adottare assamento a ri, Strutture v pom	35±10 40±10 al cono di Al Ap erticali, Getti pa, Strutture	prams pplicazioni ciclopici, Par faccia vista, 1	eti contro terra ntercapedini -2,00 % -3,50 % per	, Platee, Getti con $\epsilon_c \leq \epsilon_{c2}$
25 ΔC _{dur,add} Classe di consistenza S4 ε _{c2} ε _{cu} Legame 18 16 14 12 12 12 14 17 18 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	Deformazio Deformazio Costitutivo	8 [mm] one corrente iida ne limite del	CLASSE Abbassame (m da 160 tratto para	8 C DI CONSIS nto al cono m) a 210 DEFORMA polico	25 opriferro c _{nom} (TENZA - Abba Plinti, Pilasti	±10 da adottare assamento a ri, Strutture v pom	35±10 40±10 al cono di Al Ap erticali, Getti pa, Strutture	prams pplicazioni ciclopici, Par faccia vista, 1	eti contro terra ntercapedini -2,00 % -3,50 % per	, Platee, Getti con $\epsilon_c \leq \epsilon_{c2}$

A.2 - 2.1.1. CALCESTRUZZO PER ELEVAZIONI (solette, rampe scale)

Classe di re	esistenza								C30/37	[N/mm ²]
	the del calces	truzzo							• • • • • • • • • • • • • • • • • • • •	A 2
R _{ck}		caratteristic	a a compres	sione cubic					37	[N/mm ²]
		caratteristic							30	
f _{ck}				Sione cilinai	ica		- 6-1-10			[N/mm ²]
f _{cm}		cilindrica me					= fck+8		38,00	[N/mm ²]
f _{ctm}		media a tra					$= 0.3 \times f_{ck}^{2/3}$		2,90	[N/mm²]
f_{dm}		media a tra					$= 1,2 \times f_{ctm}$		3,48	[N/mm²]
f_{ctk}	Resistenza	caratteristic	a a trazione				$= 0.7 \times f_{ctm}$		2,03	[N/mm²]
f_{bk}	Resistenza	tangenziale	caratteristi	ca di aderen	za (ø < 32 mm	1)	= $2,2 \times \eta \times f_{ctk}$		4,56	[N/mm ²]
f* _{bk}	Resistenza	tangenziale	caratteristi	ca di aderen	za in zona tes	а	$= f_{bk} / 1,50$		3,04	[N/mm ²]
E _{cm}	Modulo elas	stico istanta	neo			= 22000	$0 \times [f_{cm}/10]^{0,3}$		32.837	[N/mm ²]
α	Coefficiente	dilatazione	termica						1,00E-05	[°C ⁻¹]
Resistenze	di calcolo									
α_{cc}	Coefficiente	riduttivo pe	er le resister	nze a lunga	durata				0,85	
γc	Coefficiente	parziale sid	urezza del d	alcestruzzo					1,50	1
f_{cd}	Resistenza	di calcolo a	compression	ne			$= \alpha_{cc} \times f_{ck} / \gamma_{c}$		17,00	[N/mm ²]
f*cd			1973)		piani e con sp.	< 50 mm	$= 0.80 \times f_{cd}$		13,60	[N/mm ²]
f _{ctd}		di calcolo a			= 0011 3p1		$= f_{ctk}/\gamma_c$		1,35	[N/mm ²]
		tangenziale					$= r_{ctk}/\gamma_c$ $= f_{bk}/\gamma_c$			
f _{bd}									3,04	[N/mm ²]
f* _{bd}		tangenziale		a di calcolo il	n zona tesa		= f^*_{bk}/γ_c		2,03	[N/mm ²]
	nmissibile pe								22.0	
☐ Elementi	piani (solette, pareti) gettati in opera con cls ordinari e con spessori minori di 50 mm (riduzione 20% dei valori limite)				nite)	NO				
	rara	oc.amm					$= 0,60 \times f_{ck}$		18,00	[N/mm ²]
quasi p	permanente	c.amm					$= 0,45 \times f_{ck}$		13,50	[N/mm ²]
Classe di esposizione ambientale				Condizioni ambientali (tab. 4.1/II)	Tipologia di armatura e di elemento (tab.C4.1IV)					
хсз		Umidità moderata.			Calcestruzzo armato ordinario o precompresso in esterni con superfici esterne riparate dalla pioggia, o in interni con umidità da moderata ad alta			Ordinarie	barre da c.a. elementi a piast	
CALCO	LO COPRII	FERRO: UNI	EN 1992-1	-1 - CLASS	E STRUTTURA	ALE S3	Controllo d	i gualità pro	duzione cls	NO
			barre	•	max(c _{min,dur} ;c _{min,b} ;10	J			W 200	
$c_{min}+\Delta c_{Vn}$	C _{min,dur}	ø _{max,am}	raggruppate n _b	C _{min,b}	mm) C _{min}	tolleranza ΔC _{dev}	C _{nom} = C _{min} +∆C _{dev}	interferro	sp. minimo struttura	Diametro inert
[mm]	[mm]	[mm]	[-]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
15	15	16	1	16	16	±10	26±10	100	150	16
15	15	8	1	8	15	±10	25±10	100	130	10
$\Delta c_{dur,add}$	0	[mm]		С	opriferro c _{nom} o	da adottare	25±10			
			CLASSE	DI CONSIS	TENZA - Abba	ssamento a	al cono di Al	rams		
			466	nto al cono						
Classe di consistenza	Denominazio	one corrente	ADDASSAME (m				Ap	plicazioni		
		ida	(m		Plinti, Pilastr		000.0	ciclopici, Pare		, Platee, Getti con
consistenza			(m	m)) a 210	Plinti, Pilastr	pom	rerticali, Getti pa, Strutture	ciclopici, Pare		, Platee, Getti con
S4	Flu	ida	(m	m)) a 210 DEFORMA		pom	rerticali, Getti pa, Strutture	ciclopici, Pare	ntercapedini	, Platee, Getti con
S4 ε _{c2}	Flu	ida ne limite del	(m	m)) a 210 DEFORMA		pom	rerticali, Getti pa, Strutture	ciclopici, Pare	-2,00 ‰	, Platee, Getti con
S4	Flu	ida ne limite del	(m	m)) a 210 DEFORMA		pom	rerticali, Getti pa, Strutture	ciclopici, Pare	ntercapedini	, Platee, Getti con
S4 \$\varepsilon_{consistenza}\$ \$\varepsilon_{co}\$	Flu	ida ne limite del ne ultima	da 160	m) Da 210 DEFORMA bolico	AZIONE LIMIT	pom	rerticali, Getti pa, Strutture	ciclopici, Pare	-2,00 ‰	, Platee, Getti con
S4 ϵ_{c2} ϵ_{cu} Legame	Flu Deformazio Deformazio	ida ne limite del ne ultima	da 160	m) Da 210 DEFORMA bolico	AZIONE LIMIT	pom	verticali, Getti pa, Strutture ERIALE	ciclopici, Parr faccia vista, I	-2,00 % -3,50 %	
ϵ_{c2} ϵ_{cu} Legame	Flu Deformazio Deformazio	ida ne limite del ne ultima	da 160	m) Da 210 DEFORMA bolico	AZIONE LIMIT	pom	rerticali, Getti pa, Strutture	ciclopici, Parr faccia vista, I	-2,00 ‰	, Platee, Getti con $\epsilon_c \le \epsilon_{c2}$
ϵ_{c2} ϵ_{cu} Legame	Flu Deformazio Deformazio	ida ne limite del ne ultima	da 160	m) Da 210 DEFORMA bolico	AZIONE LIMIT	pom	verticali, Getti pa, Strutture ERIALE	ciclopici, Parr faccia vista, I	-2,00 % -3,50 %	
ϵ_{c2} ϵ_{cu} Legame	Flu Deformazio Deformazio	ida ne limite del ne ultima	da 160	m) Da 210 DEFORMA bolico	AZIONE LIMIT	pom	rerticali, Getti pa, Strutture ERIALE $\epsilon_{c} = 2 \cdot f_{cd} / \epsilon_{c2} \cdot [\epsilon_{cd} / \epsilon_{cd} / \epsilon_{c2} \cdot [\epsilon_{cd} $	ciclopici, Parr faccia vista, I	-2,00 % -3,50 %	
\$4 \$4 \$4 \$4 \$4 \$54 \$54 \$54 \$554 \$555 \$	Flu Deformazio Deformazio	ida ne limite del ne ultima	da 160	m) Da 210 DEFORMA bolico	AZIONE LIMIT	pom	rerticali, Getti pa, Strutture ERIALE $\epsilon_{c} = 2 \cdot f_{cd} / \epsilon_{c2} \cdot [\epsilon_{cd} / \epsilon_{cd} / \epsilon_{c2} \cdot [\epsilon_{cd} $	ciclopici, Parr faccia vista, I 	-2,00 % -3,50 % per	ε _c ≤ ε _{c2}
ϵ_{c2} ϵ_{cu} Legame	Flu Deformazio Deformazio	ida ne limite del ne ultima	da 160	m) Da 210 DEFORMA bolico	AZIONE LIMIT	pom	rerticali, Getti pa, Strutture ERIALE $\epsilon_{c} = 2 \cdot f_{cd} / \epsilon_{c2} \cdot [\epsilon_{cd} / \epsilon_{cd} / \epsilon_{c2} \cdot [\epsilon_{cd} $	ciclopici, Parr faccia vista, I 	-2,00 % -3,50 % per	ε _c ≤ ε _{c2}
\$4 \$4 \$4 \$4 \$54 \$62 \$62 \$62 \$15 \$15 \$10 \$10 \$10 \$10	Flu Deformazio Deformazio	ida ne limite del ne ultima	da 160	m) Da 210 DEFORMA bolico	AZIONE LIMIT	pom	rerticali, Getti pa, Strutture ERIALE $\epsilon_{c} = 2 \cdot f_{cd} / \epsilon_{c2} \cdot [\epsilon_{cd} / \epsilon_{cd} / \epsilon_{c2} \cdot [\epsilon_{cd} $	ciclopici, Parr faccia vista, I 	-2,00 % -3,50 % per	ε _c ≤ ε _{c2}

A.2 - 2.2 ACCIAIO PER CEMENTO ARMATO

# ARM 1	- ACCIAIO PER CEMENTO ARMATO)						
Tipo							B 450 C	
Caratteris	tiche dell'acciaio							
f_{yk}	Tensione caratteristica di snervar	nento					450	[N/mm ²]
Es	Modulo elastico						206.000	[N/mm ²]
$A_{gt,k}$	Allungamento						≥ 7,5 %	
Rapporto	di duttilità 1) :	1,15	≤	$(f_t/f_y)_k$	<	1,35		
Rapporto di duttilità 2) :		$(f_y/f_{y,nom})_k$		≤ 1,25				
Diametro barre utilizzabili:		6 mm	≤	d	≤	40 mm		
Diametro reti elettrosaldate utilizzabili:		6 mm	≤	d	≤	16 mm		
Diametri d_{min}/d_{max} per reti elettrosaldate: d_{min}/d_{max}		≥	0,60					
Resistenze	e di calcolo							
f_{tk}	Tensione caratteristica di rottura						540	[N/mm ²]
γs	Coefficiente parziale sicurezza de	ll'acciaio					1,15	[-]
f_{yd}	Resistenza di calcolo				$= f_{yk}/r$	/s	391	[N/mm ²]
σ _{s,amm}	Tensione ammissibile per combina	zione caratterist	ica	=	$= 0.80 \times f_{y}$	rk	360	[N/mm ²]
Deformazi	one limite del materiale							
ϵ_{yd}	Deformazione allo snervamento						± 1,87 ‰	
ϵ_{uk}	Deformazione uniforme ultima						± 75,00 ‰	
ϵ_{ud}	Deformazione ultima di progetto						± 67,50 ‰	
k	Rapporto di sovraresistenza	$= (f_t / f_y)_k$					1,20	[-]



Qualora il costruttore adottasse giunzioni delle barre in opera o fuori opera o assemblaggi delle gabbie di armatura mediante saldatura, si prescrive l'uso di acciaio **saldabile**.

Per l'acciaio si adotta un diagramma tensione-deformazione elastico-perfettamente plastico indefinito.

A.2 - 2.3 ACCIAIO PER RETI ELETTROSALDATE

Tipo							B 450 A	
Caratteristic	the dell'acciaio							
f_{yk}	Tensione caratteristica di snervar	mento					450	[N/mm ²]
Es	Modulo elastico						206.000	[N/mm ²]
$A_{gt,k}$	Allungamento						≥ 2,5 %	
Rapporto di	i duttilità 1) :	1,05	≤	$(f_t/f_y)_k$				
Rapporto di	i duttilità 2) :	$(f_y/f_{y,nom})_k$		≤ 1,25				
Diametro barre utilizzabili:		6 mm	≤	d	≤	40 mm		
Diametro reti elettrosaldate utilizzabili:		5 mm	≤	d	≤	10 mm		
Diametri d_{min}/d_{max} per reti elettrosaldate:		$d_{\text{min}}\!/d_{\text{max}}$	≥	0,60				
Resistenze d	di calcolo							
f_{tk}	Tensione caratteristica di rottura						540	[N/mm ²]
γ_{s}	Coefficiente parziale sicurezza de	ll'acciaio					1,15	[-]
f_{yd}	Resistenza di calcolo				$= f_{yk}/\gamma_s$		391	[N/mm ²]
$\sigma_{s,amm}$	Tensione ammissibile per combina	azione rara			= $0.80 \times f_{yk}$		360	[N/mm ²]
Deformazior	ne limite del materiale							
ϵ_{yd}	Deformazione allo snervamento						± 1,87 ‰	
ϵ_{uk}	Deformazione uniforme ultima						± 75,00 ‰	
ϵ_{ud}	Deformazione ultima di progetto						± 67,50 ‰	
k	Rapporto di sovraresistenza	$= (f_t / f_v)_k$					1,20	[-]

Qualora il costruttore adottasse giunzioni delle barre in opera o fuori opera o assemblaggi delle gabbie di armatura mediante saldatura, si prescrive l'uso di acciaio **saldabile**.

Per l'acciaio si adotta un diagramma tensione-deformazione elastico-perfettamente plastico indefinito.

A.2 - 2.4 ACCIAIO PER CARPENTERIA METALLICA

Tipo			S 275	
Caratteris	tiche dell'acciaio			
f_{yk}	Tensione caratteristica di snervamento		275	[N/mm ²]
Resistenz	e di calcolo			
f_{tk}	Tensione caratteristica di rottura		430	[N/mm ²]
γмо	Coefficiente parziale sicurezza dell'acciaio		1,05	[-]
f_{yd}	Resistenza di calcolo	$= f_{yk}/\gamma_{M0}$	262	[N/mm ²]
E_s	Modulo elastico		210.000	[N/mm ²]
ν	Coefficiente di Poisson		0,30	[-]
G	Modulo di elasticità trasversale	= E / [2 (1 + v)]	80.769	[N/mm ²]
α	Coefficiente di espansione termica lineare		12,0E-06	[°C ⁻¹]

A.2 - 2.5 Bulloni

Agli assiemi Vite/Dado/Rondella impiegati nelle giunzioni 'non precaricate' si applica quanto specificato al punto A del § 11.1 in conformità alla norma europea armonizzata UNI EN 15048-1.

In alternativa anche gli assiemi ad alta resistenza conformi alla norma europea armonizzata UNI EN 14399-1 sono idonei per l'uso in giunzioni non precaricate.

Viti, dadi e rondelle, in acciaio, devono essere associate come in tabella 11.3.XIII.a.

Tab. 11.3.XIII.a

Viti	Dadi	Rondelle	Riferimento
Classe di resistenza	Classe di resistenza	D	
UNI EN ISO 898-1:2013	UNI EN ISO 898-2:2012	Durezza	
4.6	4.5.6		
4.8	4; 5; 6 oppure 8		
5.6	F (100 HV min.	
5.8	5; 6 oppure 8		UNI EN 15048-1
6.8	6 oppure 8		
8.8	8 oppure 10	100 HV min	
10.9	10 oppure 12	oppure 300 HV min.	

Le tensioni di snervamento f_{yb} e di rottura f_{tb} delle viti appartenenti alle classi indicate nella precedente Tab. 11.3.XIII.a sono riportate nella seguente Tab. 11.3.XIII.b:

Tab. 11.3.XIII.b

Classe	4.6	4.8	5.6	5.8	6.8	8.8	10.9
f _{vb} (N/mm ²)	240	320	300	400	480	640	900
f _{tb} (N/mm ²)	400	400	500	500	600	800	1000

I bulloni dovranno essere conformi per le caratteristiche dimensionali alle norme UNI EN ISO 4016:2011 e UNI 5592:1968 e saranno ad alta resistenza di classe **8.8** secondo la norma UNI EN ISO 898-1:2013.

I dadi saranno ad alta resistenza di classe 8.

I bulloni saranno caratterizzati dalle seguenti caratteristiche meccaniche:

Classe vit	ti	8.8		
Caratteris	tiche delle viti			
f_{yb}	Tensione caratteristica di snervamento		640	[N/mm ²]
Resistenz	e di calcolo			
f_{tb}	Tensione caratteristica di rottura		800	[N/mm ²]
γм2	Coefficiente parziale sicurezza		1,25	[-]
f_{yd}	Resistenza di calcolo	$= f_{yb}/\gamma_{M2}$	512	[N/mm²]
k	coeff. per calcolo resistenza di progetto a taglio		0,60	[-]
$f_{yd,V}$	Resistenza di calcolo a taglio	$= k f_{tb}/\gamma_{M2}$	384	[N/mm ²]

Per il serraggio dei bulloni a taglio senza precarico attenersi a quanto prescritto dalla norma EN 1090-2 (rif. 5.6.3) e quindi serrarli in maniera tale da raggiungere una condizione di "aderenza a tenuta".

Questa condizione si ottiene semplicemente applicando durante il serraggio lo sforzo di un uomo con una chiave per bulloni di dimensioni normali senza l'utilizzo di un braccio di estensione. Con la chiave a percussione questo stato si raggiunge in genere quando essa inizia a martellare.

Il serraggio deve essere condotto progressivamente prendendo a riferimento tutti i bulloni del gruppo partendo dalla parte più rigida a quella meno rigida in modo da ottenere un'aderenza a tenuta la più uniforme possibile e utilizzando, se necessario, più cicli di serraggio.

Per i bulloni SB con classe di resistenza certificata è possibile adottare coppie di serraggio con valori che vanno dal 50% al 70% di quelli che si adotterebbero per i bulloni con precarico come da tabella sottostante:

Tabella 1 –bulloneria a taglio SB senza precarico

Vite Classe 8.8	Coppia di serraggio al 50% (Nm)	Coppia di serraggio al 70% (Nm)
M12	39.7	55.5
M14	63.1	88.4
M16	98.5	137.9
M18	135.5	189.7
M20	192.1	268.9
M22	261.3	365.8
M24	332.1	464.9
M27	485.8	680.1
M30	659.7	923.6
M36	1153.0	1614.1

Per il serraggio di bulloni ad attrito precaricati attenersi alle indicazioni della norma EN 1090-2 e della UNI EN 14399-1.

A.2 - 2.6 Tirafondi

I tirafondi saranno in Materiale standard: S355 con certificato EN 10204 3.1 e DOP della materia prima

	S355
Carico unitario di rottura a trazione f _{tk}	510 N/mm ²
Tensione di snervamento f _{yk}	355 N/mm ²

A.2 - 2.7 Saldature

La saldatura degli acciai dovrà avvenire con uno dei procedimenti all'arco elettrico codificati secondo la norma UNI EN ISO 4063:2010. I saldatori nei procedimenti semiautomatici e manuali dovranno essere qualificati secondo la norma UNI EN 287-1:2007 da parte di un Ente terzo. A deroga di quanto richiesto nella norma UNI EN 287-1:2007, i saldatori che eseguono giunti a T con cordoni d'angolo dovranno essere specificamente qualificati e non potranno essere qualificati soltanto mediante l'esecuzione di giunti testa-testa.

I lembi, al momento della saldatura, dovranno essere regolari, lisci ed esenti da incrostazioni, ruggine, scaglie, grassi, vernici, irregolarità locali secondo la norma UNI EN ISO 9692:2005. Il disallineamento dei lembi deve essere non maggiore di 1/8 dello spessore con un massimo di 1,5 mm; nel caso di saldatura manuale ripresa al vertice, si potrà tollerare un disallineamento

di entità doppia.

Nei giunti di testa ed in quelli a T a completa penetrazione effettuati con saldatura manuale, il vertice della saldatura deve essere sempre asportato, per la profondità richiesta per raggiungere il metallo perfettamente sano, a mezzo di scalpellatura, smerigliatura od altro adeguato sistema, prima di effettuare la seconda saldatura (nel caso di saldature su ambo i lati) o la ripresa.

Qualora ciò non sia possibile, si dovrà fare ricorso alla preparazione a V con piatto di sostegno. In assenza di ulteriori e specifiche indicazioni:

- i collegamenti saldati testa a testa sono realizzati con saldature a completa penetrazione e a completo ripristino della resistenza delle sezioni collegate;
- i collegamenti con giunti a cordone d'angolo sono realizzati con dimensioni di gola uguali a
 0,70 volte lo spessore minimo delle sezioni da saldare.

A.2 - 3. Specifiche classe di esecuzione (UNI EN1090-2:2018)

La norma EN 1090-1 richiede al produttore di acquisire, attraverso il progetto, tutta una serie di informazioni indispensabili in fase di produzione, per poter realizzare un prodotto conforme alla norma EN1090-1. Le informazioni richieste sono tanto più numerose e dettagliate quanto più alta è la classe di esecuzione della struttura e/o del componente progettato.

Le forniture in cantiere di carpenteria metallica devono essere accompagnate dall'etichettatura CE e dalla Dichiarazione di Prestazione secondo gli schemi proposti dal Regolamento EU 305/11 e dal Regolamento EU 574/14. Il prelievo di campioni di carpenteria metallica rimane sempre obbligatorio secondo quanto previsto dal DM 17/1/2018.

L'applicazione della UNI EN 1090-1 comporta il rispetto da parte dell'officina anche della norma UNI EN 1090-2 "Esecuzione di strutture di acciaio e di alluminio - Parte 2: Requisiti tecnici per strutture di acciaio".

Definita la categoria di produzione, i controlli in termini di frequenza sulle strutture seguono quanto previsto dalla norma UNI EN 1090-2.

La struttura in acciaio oggetto della presente relazione è stata progettata con fattore di struttura q = 1,0 struttura non dissipativa (classe DCL secondo Eurocodice).

Classe di conseguenza: CC2

Classe di Conseguenze	Descrizione	Esempi di edifici e di opere di ingegneria civile
ссз	Elevate conseguenze per perdita di vite umane, o conseguenze molto gravi in termini economici, sociali o ambientali	Gradinate in impianti sportivi, edifici pubblici nei quali le conseguenze del collasso sono alte (per esempio una sala da concerti)
CC2	Conseguenze medie per perdita di vite umane, conseguenze considerevoli in termini economici, sociali o ambientali	Edifici residenziali e per uffici, edifici pubblici nei quali le conseguenze del collasso sono medie (per esempio un edificio per uffici)
CC1	Conseguenze basse per perdita di vite umane, e conseguenze modeste o trascurabili in termini e economici, sociali o ambientali	generalmente nessuno entra (per

Categoria di servizio: SC1

prospetto B.1 Criteri suggeriti per le categorie di servizi

Categorie	Criteri
SC1	 Strutture e componenti progettate solo per azioni quasi statiche (Esempio: Edifici) Strutture e componenti con connessioni progettate per azioni sismiche nelle regioni con bassa attiviti sismica e in DCL * Strutture e componenti progettate per le azioni a fatica degli apparecchi di sollevamento (classe S₀)**
SC2	 Strutture e componenti progettate per le azioni fatica secondo la EN 1993. [Esempi: Ponti stradali e ferroviari, gru (classe da S₁ a S₉)**, strutture suscettibili alle vibrazioni indotte dal vento, dalla folla o dalla rotazione di macchine]. Strutture e componenti con connessioni progettate per azioni sismiche nelle regioni con media o alta attività sismica ed in DCM* e DCH*

Classe di produzione: PC1

Criteri suggeriti per le categorie di produzione

Categorie	Criteri
PC1	 Componenti non saldati realizzati da prodotti di qualsiasi classe di acciaio Componenti saldati realizzati da prodotti di acciaio di classe minore a S355
PC2	 Componenti saldati realizzati da prodotti di acciaio di classe S355 e maggiore Componenti essenziali per l'integrità strutturale che vengono assemblati mediante saldatura in cantiere Componenti prodotti mediante formatura a caldo o che ricevono un trattamento termico durante la fabbricazione Componenti di tralicci CHS che richiedono taglio finale del profilo

Dalla tabella B.3 ne deriva una categoria di produzione: EXC2

prospetto B.3 Matrice raccomandata per la determinazione delle classi di esecuzione

Classi di impo	rtanza	CC	C1	cc	2	C	C3
Categorie di s	ervizio	SC1	SC2	SC1	SC2	SC1	SC2
Categorie di	PC1	EXC1	EXC2	EXC2	EXC3	EXC3 a)	EXC3 a)
produzione	PC2	EXC2	EXC2	EXC2	EXC3	EXC3 a)	EXC4
,	bbe essere applici izioni nazionali.	ato a strutture sp	eciali o strutture	con conseguenze	estreme di cedir	mento strutturale,	come richiesto

Tabella 1 - Determinazione delle classi di esecuzione secondo UNI EN 1993-1-1:2005/A1:2014 (tab. C.1 Appendice C)

Ī	Classi di Affidabilità (RC)	Tip	oo di carico
	O Classi di Conseguenze (CC)	Quasi-statico e/o classe di duttilità sismica DCL (1)	Soggette a fatica (²) e/o classe di duttilità sismica DCM o DCH (¹)
I	RC3 o CC3	EXC3(3)	EXC3(3)
[RC2 o CC2	EXC2	EXC3
	RC1 o CC1	EXC1	EXC2

⁽¹⁾ Classi di duttilità definite in EN 1998-1; DCL=bassa, DCM=media, DCH=alta.

⁽²) Vedi EN 1993-1-9.
(³) Per strutture nelle quali il superamento degli stati limite di servizio ed ultimi porti a conseguenze giudicate particolarmente onerose, può essere specificata la classe EXC4.

A.2 - 4.Determinazione del grado di resilienza (UNI EN 1993-1-10:2005)

Le Norme tecniche per le costruzioni NTC2018 al §4.2.4.1.5 trattano in maniera specifica il problema della fragilità degli acciai alle basse temperature.

In particolare:

La temperatura minima alla quale l'acciaio per impiego strutturale può essere utilizzato senza pericolo di rottura fragile, in assenza di dati più precisi, deve essere stimata sulla base della temperatura T alla quale per detto acciaio può essere garantita la resilienza K_V , richiesta secondo le norme europee applicabili.

Per quanto riguarda le caratteristiche di tenacità, nel caso di strutture non protette, si assumono come temperatura di riferimento T_{Ed} quella minima del luogo di installazione della struttura, con un periodo di ritorno di cinquant'anni T_{min} definita al §3.5.2

$$T_{Ed} = T_{min}$$
 [4.2.58]

Nel caso di strutture protette verrà invece adottata la temperatura T min aumentata di $15\ ^{\circ}\mathrm{C}$

$$T_{Ed} = T_{min} + 15 \, ^{\circ}C \, [4.2.59]$$

In assenza di dati statistici locali si potrà assumere come temperatura di riferimento il valore $T_{Ed} = -25$ °C per strutture non protette e $T_{Ed} = -10$ °C per strutture protette.

Per la determinazione dei massimi spessori di utilizzo degli acciai in funzione

- della temperatura minima di servizio,
- dei livelli di sollecitazione di progetto σ_{Ed} col metodo agli stati limiti,
- del tipo e del grado dell'acciaio,

può essere utilizzato il prospetto 2.1 di UNI EN 1993-1-10:2005.

Per membrature compresse valgono le prescrizioni del prospetto 2.1 della UNI EN 1993-1-10 con σ_{Ed} =0,25 f_y.

Tale tabella è valida per velocità di deformazione non superiori a $\varepsilon_0 = 4x10^{-4}/s$ e per materiali che non abbiano subito incrudimenti e/o invecchiamenti tali da alterarne le caratteristiche di tenacità.

Al §3.5.2 delle norme si ha:

La temperatura dell'aria esterna, $T_{\rm est}$, può assumere il valore $T_{\rm max}$ o $T_{\rm min}$, definite rispettivamente come temperatura massima estiva e minima invernale dell'aria nel sito della costruzione, con riferimento ad un periodo di ritorno di 50 anni.

Per un'opera di nuova realizzazione in fase di costruzione o per le fasi transitorie relative ad interventi sulle costruzioni esistenti, il periodo di ritorno dell'azione potrà essere ridotto come di seguito specificato:

- - per fasi di costruzione o fasi transitorie con durata prevista in sede di progetto non superiore a tre mesi, si assumerà $T_R \ge 5$ anni;
- - per fasi di costruzione o fasi transitorie con durata prevista in sede di progetto compresa fra tre mesi d un anno, si assumerà $T_R \ge 10$ anni;

In mancanza di adeguate indagini statistiche basate su dati specifici relativi al sito in esame, T_{max} o T_{min} dovranno essere calcolati in base alle espressioni riportate nel

seguito, per le varie zone indicate nella Fig. 3.5.1. Tale zonazione non tiene conto di aspetti specifici e locali che, se necessario, dovranno essere definiti singolarmente.

Fig. 3.5.1 - Zone della temperatura dell'aria esterna.

Nelle espressioni seguenti, T_{max} o T_{min} sono espressi in °C; l'altitudine di riferimento as (espressa in m) è la quota del suolo sul livello del mare nel sito dove è realizzata la costruzione.

Zona I

Valle d'Aosta, Piemonte, Lombardia, Trentino-Alto Adige, Veneto, Friuli-Venezia Giulia, Emilia Romagna:

$$T_{min} = -15 - 4 \cdot a_s / 1000$$
 [3.5.1]
 $T_{max} = 42 - 6 \cdot a_s / 1000$ [3.5.2]

Zona II

Liguria, Toscana, Umbria, Lazio, Sardegna, Campania, Basilicata:

$$T_{min} = -8 - 6 \cdot a_s / 1000$$
 [3.5.3]
 $T_{max} = 42 - 2 \cdot a_s / 1000$ [3.5.4]

Zona III

Marche, Abruzzo, Molise, Puglia:

$$T_{min} = -8 - 7 \cdot a_s / 1000$$
 [3.5.5]
 $T_{max} = 42 - 0.3 \cdot a_s / 1000$ [3.5.6]

$$T_{\text{max}} = 42 - 0.3 \cdot a_{s} / 1000$$
 [3

Zona IV

Calabria, Sicilia:

$$T_{min} = -2 - 9 \cdot a_s / 1000$$
 [3.5.7]
 $T_{max} = 42 - 2 \cdot a_s / 1000$ [3.5.8]

Nel caso in esame si ha:

Struttura in acciaio:	PROTETTA	
Tipo di acciaio:	S275	
Regione	Campania	
Zona geografica:	II	
Altezza sito s.l.m. a _s :	27 m	
$T_{min} = -8 - 6 a_s/1000 =$	- 8 °C	
$T_{\text{max}} = 42 - 2 \text{ a}_{\text{s}}/1000 =$	42 °C	
$T_{Ed} = T_{min} + 15$ °C=	7 °C [item	1 4.2.58 NTC2018]

Tenendo conto del range delle temperature riportato nella tabella 2.1. della UNI EN 1993-1-10:2005 si assume a favore di sicurezza una temperatura di riferimento:

$$T_{Ed} = 0^{\circ}C$$

Assumendo un tasso di lavoro massimo nella tabella 2.1. $\sigma_{Ed}=0.75~f_y$. si ha uno spessore massimo profilo utilizzato < 45 mm

Table 2.1: Maximum permissible values of element thickness t in mm

											Re	ferer	ce te	mper	ature	T _{Ed} [°	[C]							
Steel	Sub-	<u>₹2</u>)Κ	V (AC ₂)	10	0	-10	-20	-30	-40	-50	10	0	-10	-20	-30	-40	-50	10	0	-10	-20	-30	-40	-50
grade	grade	at T [°C]	J_{min}			σ _{Ed} =	0,75	f _y (t)					σ _{Ed} =	0,50	f _y (t)					σ _{Ed} =	= 0,25	f _y (t)		
S235	JR	20	27	60	50	40	35	30	25	20	90	75	65	55	45	40	35	135	115	100	85	75	65	60
	J0	0	27	90	75	60	50	40	35	30	125	105	90	75	65	55	45	175	155	135	115	100	85	75
	J2	-20	27	125	105	90	75	60	50	40	170	145	125	105	90	75	65	200	200	175	155	135	115	100
S275	JR	20	27	55	45	35	30	25	20	15	80	70	55	50	40	35	30	125	110	95	80	70	60	55
	J0	0	27	75	65	55	45	35	30	25	115	95	80	70	55	50	40	165	145	125	110	95	80	70
	J2	-20	27	110	95	75	65	55	45	35	155	130	115	95	80	70	55	200	190	165	145	125	110	95
-	M,N	-20	40	135	110	95	75	65	55	45	180	155	130	115	95	80	70	200	200	190	165	145	125	110
	ML,NL	-50	27	185	160	135	110	95	75	65	200	200	180	155	130	115	95	230	200	200	200	190	165	145
S355	JR	20	27	40	35	25	20_	15	15	10	65	55	45	40	30	25	25	110	95	80	70	60	55	45
l	10	0	27	60	50	40	35_	25	20	15	95	80	65	55	45	40	30	150	130	110	95	80	70	60
	J2	-20	27	90	75	60	50	40	35	25	135	110	95	80	65	55	45	200	175	150	130	110	95	80
	K2,M,N	-20	40	110	90	75	60	50	40	35	155	135	110	95	80	65	55	200	200	175	150	130	110	95
	ML,NL	-50	27	155	130	110	90	75	60	50	200	180	155	135	110	95	80	210	200	200	200	175	150	130
S420	M,N	-20	40	95	80	65	55	45	35	30	140	120	100	85	70	60	50	200	185	160	140	120	100	85
	ML,NL	-50	27	135	115	95	80	65	55	45	190	165	140	120	100	85	70	200	200	200	185	160	140	120
S460	Q	-20	30	70	60	50	40	30	25	20	110	95	75	65	55	45	35	175	155	130	115	95	80	70
	M,N	-20	40	90	70	60	50	40	30	25	130	110	95	75	65	55	45	200	175	155	130	115	95	80
l	QL	-40	30	105	90	70	60	50	40	30	155	130	110	95	75	65	55	200	200	175	155	130	115	95
	ML,NL	-50	27	125	105 125	90	70	60 70	50	40	180	155	130	110	95	75 95	65 75	200	200	200	175	155	130	115
0000	QL1	-60	30	150	_	105	90		60	50	200	180	155		110	_	_	215	200	200	_	175	155	130
S690	Q	0	40	40	30	25	20	15	10	10	65	55	45	35	30	20	20	120	100	85	75	60 75	50	45
l	Q	-20	30 40	50 60	40 50	30 40	25	20	15	10	80 95	65 80	55 65	45 55	35 45	30		140 165	140	100	100	85	60 75	50
	QL QL	-20		75	60	50	40	30	25	20	115	95	80	65	55	45	30	190	165	140	120	100	85	60 75
		-40 -40	30 40	90	75	60	50	40	30	25	135	115	95	80	65	55	45	200	190	165	140	120	100	85
l	QL1 QL1	-40	30	110	90	75	60	50	40	30	160	135	115	95	80	65	55	200	200	190	165	140	120	100
	GLI	-60	30	110	90	13	OU	50	40	30	100	133	110	90	00	0.0	55	200	200	190	100	140	120	100

Nel caso di che trattasi si assume un acciaio: $S275 \ JR$

A.2 - 5. Trattamenti di preparazione e protezione superficiali dell'acciaio

TRATTAMENTI DI PREPARAZIONE E PROTEZIONE SUPERFICIALI: Individuazione della corrosività dell'ambiente

Per l'identificazione e la valutazione della corrosività dell'ambiente è possibile trovare utili riferimenti nella norma UNI EN ISO 9223. Tale norma stabilisce un sistema di classificazione della corrosività di ambienti atmosferici, suddiviso in categorie, basate sulla velocità di corrosione rilevata in un anno su provini normalizzati di metalli e leghe. La norma rende pertanto possibile una stima di massima della classe di corrosività basata sulla conoscenza della situazione ambientale locale, specificando i fattori chiave nella corrosione atmosferica. Questi sono costituiti dall'effetto combinato di temperatura e umidità e dall'inquinamento da biossido di zolfo e da salinità trasportata dall'aria.

La descrizione delle tipologie di ambiente in funzione delle categorie di corrosività, per la zincatura a caldo, è riportata nella norma UNI EN ISO 14713-1.

Sistema di protezione:	Zincatura a d	aldo			
Tipo di ambiente:	esterno				
Categoria di corrosività:	C1	→	molto b	assa	
Tasso di corrosione per lo zinco (UNI EN ISO 14713-1):			r_{corr}	≤	0,1 µm/anno

Spessori minimi del rivestimento su campioni non centrifugati

Articolo e spessore del materiale	Spessore locale di rivestimento (minimo) µm	Spessore medio di rivestimento (minimo) µm
Acciaio > 6 mm	70	85

Classificazione ambienti (UNI EN ISO 14713-1):	ambienti interni	ambienti esterni
	Ambienti riscaldati con bassa umidità relativa e inquinamento insignificante, per esempio uffici, scuole, musei	Zona secca o fredda, ambiente atmosferico con inquinamentoe periodo di umidità molto ridotti, per esempi alcuni deserti, Artico/Antartico centrale

Classificazione ambienti (UNI EN ISO 9223):	ambienti interni	ambienti esterni
	Bassa umidità relativa in ambiente riscaldato, assenza di inquinamento	Zone asciutte o fredde con precipitazioni molto rare con condensa molto limitata o assente

Classificazione dell'ambiente e velocità di corrosione $r_{corr} [=] \mu m / anno \\ (perdita spessore zinco)$	Ambienti interni	Ambienti esterni
C1 r _{corr} ≤0,1 non aggressivo	Bassa umidità relativa in ambiente riscaldato, assenza di inquinamento	Zone asciutte o fredde con precipitazioni molto rare con condensa molto limitata o assente
C2 0,1 <r<sub>corr≤0,7 poco aggressivo</r<sub>	Temperature ed umidità relative variabili in ambiente non riscaldato, valori bassi di inquinamento e condensa	Zone temperate con inquinamento contenuto; zone asciutte o fredde con condensa limitata; campagna, paesi o piccole città d'entroterra
C3 0,7 <cr<sub>corr≤2 mediamente aggressivo</cr<sub>	Moderata presenza di condense e di inquinamento da processi produttivi leggeri	Zona temperata con medi valori di inquinamento (SO ₂ fino a 30 $\mu g/m^3$ oppure media presenza di cloruri); aree urbane, aree costiere con bassa deposizione di cloruri
C4 2≤r _{cor} ≤4 aggressivo	Condense frequenti ed alto livello di inquinamento da processi industriali e piscine sportive	Zona temperata con alto livello di inquinamento (SO ₂ fino a 90 µg/m³ – alto livello di cloruri); aree urbane molto inquinate, distretti industriali, aree limitrofe alla costa con alta deposizione di cloruri
C5 4 <r<sub>corr≦8 molto aggressivo</r<sub>	Caverne	Inquinamento molto grave (SO ₂ fino a 250 µg/m³); aree con industrializzazione pesante, costruzioni sulla linea di costa

ricavata dalla ISO 9223 - Corrosione dei metalli e loro leghe - e dalla UNI EN ISO 14713 - Rivestimenti di Zinco, Linee guida e raccomandazioni(*)

Categoria di corrosività C Tasso di corrosione per lo zinco (in base a esposizioni di un anno), _{foer} [µm/anno] e livello di corrosione	Ambienti interni (esempi)	Ambienti esterni (esempi)		
C1 r _{corr} ≤ 0,1 Molto bassa	Ambienti riscaldati con bassa umidità relativa e inquinamento insignificante, per esempio uffici, scuole, musei	Zona secca o fredda, ambiente atmosferico con inquinamento e periodo di umidità molto ridotti, per esempio alcuni deserti, Artico/Antartico centrale		
C2 0,1 < r _{corr} <u><</u> 0,7 Bassa	Spazi non riscaldati con temperature e umidità relativa variabili. Bassa frequenza di condensa e ridotto inquinamento, per esempio magazzini, palestre	Zona temperata, ambiente atmosferico con inquinamento ridotto (SO ₂ < 5 µg/m²), per esempio aree rurali, piccole città. Zona secca o fredda, ambiente atmosferico con breve periodo di umidità, per esempio deserti, aree subartiche.		
C3 0,7 < r _{cor} <u>< 2,</u> 1 Media	Spazi con moderata frequenza di condensa e inquinamento moderato dovuto a processi produttivi, per esempio imipanti di lavorazione di generi alimentari, lavanderie, fabbriche di birra, caseifici	Zona temperata, ambiente atmosferico con inquinamento medio (SO ₂ : 5 + 30 µg/m²) o un certo effetto di cloruri, per esempio aree urbane, aree costiere con bassa deposizione di cloruri. Zone subtropicali e tropicali con atmosfera con ridotto inquinamento		
C4 2.1 < r _{cor} <u>< 4</u> ,2 Alta	Spazi con elevate frequenza di condensa ed elevato inquinamento dovuto a processi produttivi, per esempio impianti di lavorazione industriali, piscine	Zona temperata, ambiente atmosferico con elevato inquinamento (SO ₂ : 30 – 90 µg/m²) o un certo effetto di doruri, per esempio aree urbane inquinate, aree industriali, aree costiere non esposte a nebbia salina, esposizione a forte effetto di Sali antighiaccio. Zone subtropicali e tropicali con atmosfere con inquinamento medio		
C5 4,2 < r _{corr} <u><</u> 8,4 Molto alta	Spazi con elevatissima frequenza di condensa e/o elevato inquinamento dovuto a processi produttivi, per esempio miniere, caveme per scopi industriali, capanne non ventilate in zone subtropicali e tropicali	Tone temperate e subtropicali, ambiente atmosferico con inquinamento molto elevato (SO ₂ : 90 + 250 µg/m²) e/o importante effetto cloruri, per esempio aree industriali, aree costiere, posizioni riparate sulla fascia costiera		
CX 8,4<= r _{corr} <= 25 Estrema	Spazi con condensa quasi permanente o lunghi periodi di esposizione agli effetti di umidità estrema e/o con elevato inquinamento dovuto a processi produttivi, per esempio capanne non ventilate in zone tropicali umide con penetrazione dell'inquinamento estemo, compresi cloruri dispersi nell'aria e materiale particolato stimolante la corrosione	Zone subtropicali e tropicali (periodo di umidità molto elevato), ambiente atmosferico con inquinamento molto elevato (SO ₂ > 250 µg/m²), compreso inquinamento dovuto a fattori produttivi e/o forte effetto di cioruri, per esempio aree estremamente industriali, fascia costiera e aree in mare aperto con contatto occasionale con nebbia salina		

Prospetto 1 – Descrizione degli ambienti atmosferici tipici in relazione alla stima delle categorie di corrosività (UNI EN ISO 14713-1)

A.2 - 6. MATERIALI E PRODOTTI PER USO STRUTTURALE

A.2 - 6.1 GENERALITÀ

I materiali ed i prodotti ad uso strutturale utilizzati nelle opere oggetto della presente relazione, dovranno rispondere ai requisiti indicati nel capitolo 11 del D.M. 17-01-2018 "Norme Tecniche per le Costruzioni". Essi saranno:

- identificati univocamente dal produttore, secondo le procedure applicabili;
- qualificati sotto la responsabilità del produttore, secondo le procedure applicabili;
- accettati dal Direttore dei Lavori mediante acquisizione e verifica della documentazione di qualificazione, nonché mediante eventuali prove sperimentali di accettazione.

In particolare, per quanto attiene l'identificazione e la qualificazione, possono configurarsi i seguenti casi:

- a) materiali e prodotti per uso strutturale per i quali sia disponibile una norma europea armonizzata il cui riferimento sia pubblicato su GUUE. Al termine del periodo di coesistenza il loro impiego nelle opere è possibile soltanto se in possesso della Marcatura CE, prevista dalla Direttiva 89/106/CEE "Prodotti da costruzione" (CPD), recepita in Italia dal DPR 21/04/1993, n.246, così come modificato dal DPR 10/12/1997, n. 499;
- b) materiali e prodotti per uso strutturale per i quali non sia disponibile una norma armonizzata ovvero la stessa ricada nel periodo di coesistenza, per i quali sia invece prevista la qualificazione con le modalità e le procedure indicate nelle presenti norme.
 E' fatto salvo il caso in cui, nel periodo di coesistenza della specifica norma armonizzata, il produttore abbia volontariamente optato per la Marcatura CE;
- c) materiali e prodotti per uso strutturale innovativi o comunque non citati nel presente capitolo e non ricadenti in una delle tipologie A) o B). In tali casi il produttore potrà pervenire alla Marcatura CE in conformità a Benestare Tecnici Europei (ETA), ovvero, in alternativa, dovrà essere in possesso di un Certificato di Idoneità Tecnica all'Impiego rilasciato dal Servizio Tecnico Centrale sulla base di Linee Guida approvate dal Consiglio Superiore dei Lavori Pubblici.

Ad eccezione di quelli in possesso di Marcatura CE, possono essere impiegati materiali o prodotti conformi ad altre specifiche tecniche qualora dette specifiche garantiscano un livello di sicurezza equivalente a quello previsto dalle suddette norme. Tale equivalenza sarà accertata attraverso procedure all'uopo stabilite dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici, sentito lo stesso Consiglio Superiore.

Per i materiali e prodotti recanti la Marcatura CE sarà onere del Direttore dei Lavori, in fase di accettazione, accertarsi del possesso della marcatura stessa e richiedere ad ogni fornitore, per ogni diverso prodotto, il Certificato ovvero Dichiarazione di Conformità alla parte armonizzata della specifica norma europea ovvero allo specifico Benestare Tecnico Europeo, per quanto applicabile.

Sarà inoltre onere del Direttore dei Lavori verificare che tali prodotti rientrino nelle tipologie, classi e/o famiglie previsti nella detta documentazione.

Per i prodotti non recanti la Marcatura CE, il Direttore dei Lavori dovrà accertarsi del possesso e del regime di validità dell'Attestato di Qualificazione (caso B) o del Certificato di Idoneità

Tecnica all'impiego (caso C) rilasciato del Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici.

Il Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici potrà attivare un sistema di vigilanza presso i cantieri e i luoghi di lavorazione per verificare la corretta applicazione delle presenti disposizioni, ai sensi dell'art. 11 del DPR n. 246/93.

Le prove su materiali e prodotti, a seconda delle specifiche procedure applicabili, come specificato di volta in volta nel seguito, devono generalmente essere effettuate da:

- laboratori di prova notificati ai sensi dell'art.18 della Direttiva n.89/106/CEE;
- laboratori di cui all'art.59 del DPR n.380/2001;
- altri laboratori, dotati di adeguata competenza ed idonee attrezzature, appositamente abilitati dal Servizio Tecnico Centrale;

Qualora si applichino specifiche tecniche europee armonizzate, ai fini della marcatura CE, le attività di certificazione, ispezione e prova dovranno essere eseguite dai soggetti previsti nel relativo sistema di attestazione della conformità.

I produttori di materiali, prodotti o componenti disciplinati nella suddetta norma devono dotarsi di adeguate procedure di controllo di produzione in fabbrica. Per controllo di produzione nella fabbrica si intende il controllo permanente della produzione, effettuato dal fabbricante. Tutte le procedure e le disposizioni adottate dal fabbricante devono essere documentate sistematicamente ed essere a disposizione di qualsiasi soggetto od ente di controllo che ne abbia titolo.

Il richiamo alle specifiche tecniche europee EN armonizzate, di cui alla Dir. 89/106/CEE ed al DPR 246/93, contenuto nella presente norma deve intendersi riferito all'ultima versione aggiornata, salvo diversamente specificato. Il richiamo alle specifiche tecniche volontarie EN, UNI e ISO contenute nella presente norma deve intendersi riferito alla data di pubblicazione se indicata, ovvero, laddove non indicata, all'ultima versione aggiornata.

A.2 - 6.2 CALCESTRUZZO

A.2 - 6.2.1. Specifiche per il calcestruzzo

La prescrizione del calcestruzzo all'atto del progetto deve essere caratterizzata almeno mediante la classe di resistenza, la classe di consistenza ed il diametro massimo dell'aggregato. La classe di resistenza è contraddistinta dai valori caratteristici delle resistenze cubica R_{ck} e cilindrica f_{ck} a compressione uniassiale, misurate su provini normalizzati e cioè rispettivamente su cilindri di diametro 150 mm e di altezza 300 mm e su cubi di spigolo 150 mm.

Al fine delle verifiche sperimentali i provini prismatici di base 150x150 mm e di altezza 300 mm sono equiparati ai cilindri di cui sopra.

Al fine di ottenere le prestazioni richieste, si dovranno dare indicazioni in merito alla composizione, ai processi di maturazione ed alle procedure di posa in opera, facendo utile riferimento alla norma UNI ENV 13670-1:2001 ed alle Linee Guida per la messa in opera del calcestruzzo strutturale e per la valutazione delle caratteristiche meccaniche del calcestruzzo pubblicate dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici, nonché dare indicazioni in merito alla composizione della miscela, compresi gli eventuali additivi, tenuto conto anche delle previste classi di esposizione ambientale (di cui, ad esempio, alla norma UNI EN 206-1: 2006) e del requisito di durabilità delle opere.

La resistenza caratteristica a compressione è definita come la resistenza per la quale si ha il 5% di probabilità di trovare valori inferiori. La resistenza caratteristica designa quella dedotta da prove su provini come sopra descritti, confezionati e stagionati come specificato al § 11.2.4, eseguite a 28 giorni di maturazione. Si dovrà tener conto degli effetti prodotti da eventuali processi accelerati di maturazione. In tal caso potranno essere indicati altri tempi di maturazione a cui riferire le misure di resistenza ed il corrispondente valore caratteristico.

Il conglomerato per il getto delle strutture di un'opera o di parte di essa si considera omogeneo se confezionato con la stessa miscela e prodotto con medesime procedure.

A.2 - 6.2.2. Controlli di qualità del calcestruzzo

Il calcestruzzo va prodotto in regime di controllo di qualità, con lo scopo di garantire che rispetti le prescrizioni definite in sede di progetto.

Il controllo si articola nelle seguenti fasi:

- Valutazione preliminare della resistenza
 - Serve a determinare, prima dell'inizio della costruzione delle opere, la miscela per produrre il calcestruzzo con la resistenza caratteristica di progetto.
- Controllo di produzione
 - Riguarda il controllo da eseguire sul calcestruzzo durante la produzione del calcestruzzo stesso.
- Controllo di accettazione
 - Riguarda il controllo da eseguire sul calcestruzzo prodotto durante l'esecuzione dell'opera, con prelievo effettuato contestualmente al getto dei relativi elementi strutturali.
- Prove complementari
 - Sono prove che vengono eseguite, ove necessario, a complemento delle prove di accettazione.

Le prove di accettazione e le eventuali prove complementari, sono eseguite e certificate dai laboratori di cui all'art. 59 del DPR n. 380/2001.

A.2 - 6.2.3. Valutazione preliminare della resistenza

Il costruttore, prima dell'inizio della costruzione di un'opera, deve effettuare idonee prove preliminari di studio, per ciascuna miscela omogenea di calcestruzzo da utilizzare, al fine di ottenere le prestazioni richieste dal progetto.

Il costruttore resta comunque responsabile della qualità del calcestruzzo, che sarà controllata dal Direttore dei Lavori, secondo le procedure di cui al § 11.2.5.

A.2 - 6.2.4. Prelievo dei campioni

Un prelievo consiste nel prelevare dagli impasti, al momento della posa in opera ed alla presenza del Direttore dei Lavori o di persona di sua fiducia, il calcestruzzo necessario per la confezione di un gruppo di due provini.

La media delle resistenze a compressione dei due provini di un prelievo rappresenta la "Resistenza di prelievo" che costituisce il valore mediante il quale vengono eseguiti i controlli del calcestruzzo.

È obbligo del Direttore dei Lavori prescrivere ulteriori prelievi rispetto al numero minimo, di cui ai successivi paragrafi, tutte le volte che variazioni di qualità e/o provenienza dei costituenti dell'impasto possano far presumere una variazione di qualità del calcestruzzo stesso, tale da non poter più essere considerato omogeneo.

Per la preparazione, la forma, le dimensioni e la stagionatura dei provini di calcestruzzo vale quanto indicato nelle norme UNI EN 12390-1:2002 e UNI EN 12390-2:2002.

Circa il procedimento da seguire per la determinazione della resistenza a compressione dei provini di calcestruzzo vale quanto indicato nelle norme UNI EN 12390-3:2003 e UNI EN 12390-4:2002.

Circa il procedimento da seguire per la determinazione della massa volumica vale quanto indicato nella norma UNI EN 12390-7:2002.

A.2 - 6.2.5. Controllo di accettazione

Il Direttore dei Lavori ha l'obbligo di eseguire controlli sistematici in corso d'opera per verificare la conformità delle caratteristiche del calcestruzzo messo in opera rispetto a quello stabilito dal progetto e sperimentalmente verificato in sede di valutazione preliminare.

Il controllo di accettazione va eseguito su miscele omogenee e si configura, in funzione del quantitativo di calcestruzzo in accettazione, nel:

- controllo di tipo A di cui al § 11.2.5.1 del D.M. 17/01/2018;
- controllo di tipo B di cui al § 11.2.5.2 del D.M. 17/01/2018.

Il controllo di accettazione è positivo ed il quantitativo di calcestruzzo accettato se risultano verificate le disuguaglianze di cui alla Tab. 11.2.I seguente:

Tab. 11.2.I

Controllo di tipo A	Controllo di tipo B			
$R_{c,min} \ge R_{ck} - 3.5$				
$R_{cm28} \ge R_{ck} + 3.5$	R _{cm28} ≥ R _{ck} + 1,48 s			
(N° prelievi: 3)	(N° prelievi ≥ 15)			

Ove: R_{cm28} = resistenza media dei prelievi (N/mm²); $R_{c,min}$ = minore valore di resistenza dei prelievi (N/mm²); s = scarto quadratico medio

A.2 - 6.2.6. Controllo di tipo A

Il controllo di tipo A è riferito ad un quantitativo di miscela omogenea non maggiore di 300 m³. Ogni controllo di accettazione di tipo A è rappresentato da tre prelievi, ciascuno dei quali eseguito su un massimo di 100 m³ di getto di miscela omogenea. Risulta quindi un controllo di accettazione ogni 300 m³ massimo di getto. Per ogni giorno di getto va comunque effettuato almeno un prelievo.

Nelle costruzioni con meno di 100 m³ di getto di miscela omogenea, fermo restando l'obbligo di almeno 3 prelievi e del rispetto delle limitazioni di cui sopra, è consentito derogare dall'obbligo di prelievo giornaliero.

A.2 - 6.2.7. Controllo di tipo B

Nella realizzazione di opere strutturali che richiedano l'impiego di più di 1500 m³ di miscela omogenea è obbligatorio il controllo di accettazione di tipo statistico (tipo B).

Il controllo è riferito ad una miscela omogenea e va eseguito con frequenza non minore di un controllo ogni 1500 m3 di calcestruzzo.

Ogni controllo di accettazione di tipo B è costituito da almeno 15 prelievi, ciascuno dei quali eseguito su 100 m³ di getto di miscela omogenea. Per ogni giorno di getto va comunque effettuato almeno un prelievo.

Se si eseguono controlli statistici accurati, l'interpretazione dei risultati sperimentali può essere svolta con i metodi completi dell'analisi statistica assumendo la legge di distribuzione più corretta e il suo valor medio, unitamente al coefficiente di variazione (rapporto tra deviazione standard e valore medio). Non sono accettabili calcestruzzi con coefficiente di variazione superiore a 0,3. Per calcestruzzi con coefficiente di variazione (s/R_m) superiore a 0,15 occorrono controlli più accurati, integrati con prove complementari di cui al §11.2.7.

Infine, la resistenza caratteristica R_{ck} di progetto dovrà essere minore del valore sperimentale corrispondente al frattile inferiore 5% delle resistenze di prelievo e la resistenza minima di prelievo $R_{c,min}$ dovrà essere maggiore del valore corrispondente al frattile inferiore 1%.

A.2 - 6.2.8. Prescrizioni comuni per entrambi i criteri di controllo

Il prelievo dei provini per il controllo di accettazione va eseguito alla presenza del Direttore dei Lavori o di un tecnico di sua fiducia che provvede alla redazione di apposito verbale di prelievo e dispone l'identificazione dei provini mediante sigle, etichettature indelebili, ecc.; la certificazione effettuata dal laboratorio prove materiali deve riportare riferimento a tale verbale. Il laboratorio incaricato di effettuare le prove sul calcestruzzo provvede all'accettazione dei campioni accompagnati dalla lettera di richiesta sottoscritta dal direttore dei lavori. Il laboratorio

verifica lo stato dei provini e la documentazione di riferimento ed in caso di anomalie riscontrate sui campioni oppure di mancanza totale o parziale degli strumenti idonei per la identificazione degli stessi, deve sospendere l'esecuzione delle prove e darne notizia al Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici.

Il prelievo potrà anche essere eseguito dallo stesso laboratorio incaricato della esecuzione delle prove. I laboratori devono conservare i campioni sottoposti a prova per almeno trenta giorni dopo l'emissione dei certificati di prova, in modo da consentirne l'identificabilità e la rintracciabilità.

La domanda di prove al laboratorio deve essere sottoscritta dal Direttore dei Lavori e deve contenere precise indicazioni sulla posizione delle strutture interessate da ciascun prelievo.

Le prove non richieste dal Direttore dei Lavori non possono fare parte dell'insieme statistico che serve per la determinazione della resistenza caratteristica del materiale.

Le prove a compressione vanno eseguite conformemente alle norme UNI EN 12390-3:2009, tra il 28° e il 30° giorno di maturazione e comunque entro 45 giorni dalla data di prelievo. In caso di mancato rispetto di tali termini le prove di compressione vanno integrate da quelle riferite al controllo della resistenza del calcestruzzo in opera.

I certificati di prova emessi dai laboratori devono contenere almeno:

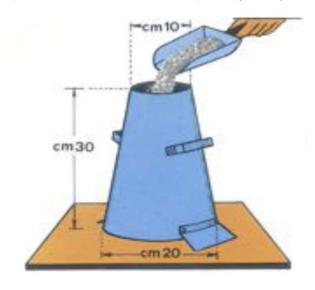
- l'identificazione del laboratorio che rilascia il certificato;
- una identificazione univoca del certificato (numero di serie e data di emissione) e di ciascuna sua pagina, oltre al numero totale di pagine;
- l'identificazione del committente dei lavori in esecuzione e del cantiere di riferimento;
- il nominativo del Direttore dei Lavori che richiede la prova;
- la descrizione, l'identificazione e la data di prelievo dei campioni da provare;
- la data di ricevimento dei campioni e la data di esecuzione delle prove;
- l'identificazione delle specifiche di prova o la descrizione del metodo o procedura adottata, con l'indicazione delle norme di riferimento per l'esecuzione della stessa;
- le dimensioni effettivamente misurate dei campioni provati, dopo eventuale rettifica;
- le modalità di rottura dei campioni;
- la massa volumica del campione;
- i valori delle prestazioni misurate.

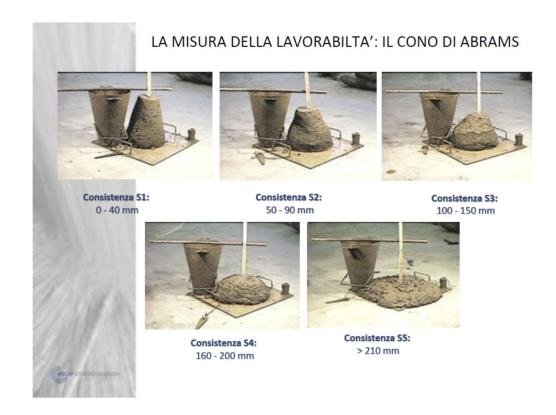
Per gli elementi prefabbricati di serie, realizzati con processo industrializzato, sono valide le specifiche indicazioni di cui al § 11.8.3.1

L'opera o la parte di opera realizzata con il calcestruzzo non conforme ai controlli di accettazione non può essere accettata finché la non conformità non è stata definitivamente risolta. Il costruttore deve procedere ad una verifica delle caratteristiche del calcestruzzo messo in opera mediante l'impiego di altri mezzi d'indagine, secondo quanto prescritto dal Direttore dei Lavori e conformemente a quanto indicato nel successivo § 11.2.6. Qualora i suddetti controlli confermino la non conformità del calcestruzzo, si deve procedere, sentito il progettista, ad un controllo teorico e/o sperimentale della sicurezza della struttura interessata dal quantitativo di calcestruzzo non conforme, sulla base della resistenza ridotta del calcestruzzo.

Qualora non fosse possibile effettuare la suddetta verifica delle caratteristiche del calcestruzzo, oppure i risultati del controllo teorico e/o sperimentale non risultassero soddisfacenti, si può: conservare l'opera o parte di essa per un uso compatibile con le diminuite caratteristiche

prestazionali accertate, eseguire lavori di consolidamento oppure demolire l'opera o parte di essa.


I controlli di accettazione sono obbligatori ed il collaudatore è tenuto a verificarne la validità, qualitativa e quantitativa; ove ciò non fosse rispettato, il collaudatore è tenuto a far eseguire delle prove che attestino le caratteristiche del calcestruzzo, seguendo la medesima procedura che si applica quando non risultino rispettati i limiti fissati dai controlli di accettazione.


A.2 - 6.2.9. Misura della lavorabilità

LA MISURA DELLA LAVORABILTA'

La prova del cono di Abrams (" Slump Test")

A.2 - 6.3 ACCIAIO

A.2 - 6.3.1. Controlli

Il D.M. 17/01/2018 prevede tre forme di controllo obbligatorie:

- in stabilimento di produzione, da eseguirsi sui lotti di produzione;
- nei centri di trasformazione, da eseguirsi sulle forniture;
- di accettazione in cantiere, da eseguirsi sui lotti di spedizione.

A tale riguardo si definiscono:

- Lotti di produzione: si riferiscono a produzione continua, ordinata cronologicamente mediante apposizione di contrassegni al prodotto finito (rotolo finito, bobina di trefolo, fascio di barre, ecc.). Un lotto di produzione deve avere valori delle grandezze nominali omogenee (dimensionali, meccaniche, di formazione) e può essere compreso tra 30 e 120 tonnellate.
- Forniture: sono lotti formati da massimo 90 t, costituiti da prodotti aventi valori delle grandezze nominali omogenee.
- Lotti di spedizione: sono lotti formati da massimo 30 t, spediti in un'unica volta, costituiti da prodotti aventi valori delle grandezze nominali omogenee.

A.2 - 6.3.2. Controlli di produzione in stabilimento e procedure di qualificazione

Tutti gli acciai oggetto delle presenti norme, siano essi destinati ad utilizzo come armature per calcestruzzo armato normale o precompresso o ad utilizzo diretto come carpenterie in strutture metalliche, devono essere prodotti con un sistema permanente di controllo interno della produzione in stabilimento che deve assicurare il mantenimento dello stesso livello di affidabilità nella conformità del prodotto finito, indipendentemente dal processo di produzione.

Fatto salvo quanto disposto dalle norme europee armonizzate, ove applicabili, il sistema di gestione della qualità del prodotto che sovrintende al processo di fabbricazione deve essere predisposto in coerenza con la norma UNI EN ISO 9001 e certificato da parte di un organismo terzo indipendente, di adeguata competenza ed organizzazione, che opera in coerenza con le norme UNI CEI EN ISO/IEC 17021-1.

Quando non sia applicabile la marcatura CE, ai sensi del Regolamento UE 305/2011, la valutazione della conformità del controllo di produzione in stabilimento e del prodotto finito è effettuata attraverso la procedura di qualificazione di seguito indicata.

Il Servizio Tecnico Centrale della Presidenza del Consiglio Superiore dei Lavori Pubblici è organismo per il rilascio dell'attestato di qualificazione per gli acciai di cui sopra.

L'inizio della procedura di qualificazione deve essere preventivamente comunicato al Servizio Tecnico Centrale allegando una relazione ove siano riportati:

- 1) elenco e caratteristiche dei prodotti che si intende qualificare (tipo, dimensioni, caratteristiche meccaniche e chimiche, ecc.);
- 2) indicazione dello stabilimento e descrizione degli impianti e dei processi di produzione;
- 3) descrizione dell'organizzazione del controllo interno di qualità con indicazione delle responsabilità aziendali;
- 4) copia della certificazione del sistema di gestione della qualità;
- 5) indicazione dei responsabili aziendali incaricati della firma dei certificati;

- 6) descrizione particolareggiata delle apparecchiature e degli strumenti del laboratorio interno di stabilimento per il controllo continuo di qualità;
- 7) dichiarazione con la quale si attesti che il servizio di controllo interno della qualità sovrintende ai controlli di produzione ed è indipendente dai servizi di produzione;
- 8) modalità di marchiatura che si intende adottare per l'identificazione del prodotto finito;
- 9) descrizione delle condizioni generali di fabbricazione del prodotto nonché dell'approvvigionamento delle materie prime e/o del prodotto intermedio (billette, rotoli, vergella, lamiere, laminati, ecc.);
- 10) copia del manuale di qualità aziendale, coerente alla norma UNI EN ISO 9001.
- 11) nel caso in cui il fabbricante non sia stabilito sul territorio dell'Unione Europea, copia della nomina, mediante mandato scritto, del mandatario.

Il Servizio Tecnico Centrale verifica la completezza e congruità della documentazione presentata e procede a una verifica documentale

preliminare della idoneità dei processi produttivi e del Sistema di Gestione della Qualità nel suo complesso.

Se tale verifica preliminare ha esito positivo, il Servizio Tecnico Centrale può effettuare una verifica ispettiva presso lo stabilimento di produzione.

Il risultato della verifica documentale preliminare unitamente al risultato della verifica ispettiva sono oggetto di successiva valutazione da parte del Servizio Tecnico Centrale per la necessaria ratifica e notifica al fabbricante. In caso di esito positivo il fabbricante può proseguire nella procedura di qualificazione del prodotto. In caso negativo viene richiesto al fabbricante di apportare le opportune azioni correttive che devono essere implementate.

La procedura di qualificazione del Prodotto prosegue attraverso le seguenti ulteriori fasi:

- esecuzione delle prove di qualificazione a cura di un laboratorio di cui all'articolo 59 del DPR n. 380/2001 incaricato dal Servizio Tecnico Centrale su proposta del fabbricante secondo le procedure di cui al § 11.3.1.4;
- invio dei risultati delle prove di qualificazione da sottoporre a giudizio di conformità al Servizio Tecnico Centrale da parte del laboratorio di cui all'art. 59 del DPR n. 380/2001 incaricato;
- in caso di giudizio positivo il Servizio Tecnico Centrale provvede al rilascio dell'Attestato di Qualificazione al fabbricante e inserisce quest'ultimo nel Catalogo ufficiale dei prodotti qualificati che viene reso pubblicamente disponibile;
- in caso di giudizio negativo, il fabbricante può individuare le cause delle non conformità, apportare le opportune azioni correttive, dandone comunicazione sia al Servizio Tecnico Centrale che al laboratorio incaricato e successivamente ripetere le prove di qualificazione.

Il prodotto può essere immesso sul mercato solo dopo il rilascio dell'Attestato di Qualificazione. La qualificazione ha validità di cinque anni.

A.2 - 6.3.3. Identificazione e rintracciabilità dei prodotti qualificati

Ciascun prodotto qualificato deve costantemente essere riconoscibile per quanto concerne le caratteristiche qualitative e riconducibile allo stabilimento di produzione tramite marchiatura indelebile depositata presso il Servizio Tecnico Centrale, dalla quale risulti, in modo

inequivocabile, il riferimento all'Azienda produttrice, allo Stabilimento, al tipo di acciaio ed alla sua eventuale saldabilità.

Ogni prodotto deve essere marchiato con identificativi diversi sia da quelli di prodotti fabbricati nello stesso stabilimento ma aventi differenti caratteristiche, sia da quelli di prodotti con uguali caratteristiche ma fabbricati in altri stabilimenti, siano essi o meno dello stesso fabbricante. La marchiatura deve essere inalterabile nel tempo e senza possibilità di manomissione.

Per stabilimento si intende una unità produttiva a sé stante, con impianti propri e magazzini per il prodotto finito. Nel caso di unità produttive multiple appartenenti allo stesso fabbricante, la qualificazione deve essere ripetuta per ognuna di esse e per ogni tipo di prodotto in esse fabbricato.

Considerate la diversa natura, forma e dimensione dei prodotti, le caratteristiche degli impianti per la loro produzione, nonché la possibilità di fornitura sia in pezzi singoli sia in fasci, possono essere adottati differenti sistemi di marchiatura, anche in relazione all'uso, quali ad esempio l'impressione sui cilindri di laminazione, la punzonatura a caldo e a freddo, la stampigliatura a vernice, l'apposizione di targhe o cartellini, la sigillatura dei fasci e altri. Permane comunque l'obbligatorietà del marchio di laminazione per quanto riguarda barre e rotoli.

L'identificazione e la rintracciabilità dei prodotti qualificati sono requisiti obbligatori. Le modalità di applicazione sono specificate nei paragrafi relativi alle singole tipologie di prodotto.

Tenendo presente che l'elemento determinante della marchiatura è costituito dalla sua inalterabilità nel tempo e dalla impossibilità di manomissione, il fabbricante deve rispettare le modalità di marchiatura dichiarate nella documentazione presentata al Servizio Tecnico Centrale e deve comunicare tempestivamente eventuali modifiche apportate.

La mancata marchiatura, la non corrispondenza a quanto depositato o la sua illeggibilità, anche parziale, rendono il prodotto non impiegabile.

Qualora, sia presso gli utilizzatori, sia presso i commercianti, l'unità marchiata (pezzo singolo o confezione) venga scorporata, per cui una parte, o il tutto, perda l'originale marchiatura del prodotto è responsabilità sia degli utilizzatori sia dei commercianti documentare la provenienza mediante i documenti di accompagnamento del materiale e gli estremi del deposito del marchio presso il Servizio Tecnico Centrale.

Nel primo caso i campioni destinati al laboratorio incaricato delle prove di cantiere devono essere accompagnati dalla sopraindicata documentazione e da una dichiarazione di provenienza rilasciata dal Direttore dei Lavori, quale risulta dai documenti di accompagnamento del materiale.

I produttori ed i successivi intermediari devono assicurare una corretta archiviazione della documentazione di accompagnamento dei materiali garantendone la disponibilità per almeno 10 anni. Ai fini della rintracciabilità dei prodotti, il costruttore deve inoltre assicurare la conservazione della medesima documentazione, unitamente a marchiature o etichette di riconoscimento, fino al completamento delle operazioni di collaudo statico.

Eventuali disposizioni supplementari atte a facilitare l'identificazione e la rintracciabilità del prodotto attraverso il marchio possono essere emesse dal Servizio Tecnico Centrale.

Tutti i certificati relativi alle prove meccaniche degli acciai, sia in stabilimento che in cantiere o nel luogo di lavorazione, devono riportare l'indicazione del marchio identificativo, rilevato a cura del laboratorio incaricato dei controlli, sui campioni da sottoporre a prove. Ove i campioni

fossero sprovvisti di tale marchio, oppure il marchio non dovesse rientrare fra quelli depositati presso il Servizio Tecnico Centrale, le certificazioni emesse dal laboratorio non possono assumere valenza ai sensi delle presenti norme e di ciò ne deve essere fatta esplicita menzione sul certificato stesso. In tal caso il materiale non può essere utilizzato ed il laboratorio incaricato è tenuto ad informare di ciò il Servizio Tecnico Centrale.

A.2 - 6.3.4. Forniture e documentazione di accompagnamento

Tutte le forniture di acciaio, per le quali non sussista l'obbligo della Marcatura CE, devono essere accompagnate dalla copia dell'attestato di qualificazione del Servizio Tecnico Centrale e dal certificato di controllo interno tipo 3.1, di cui alla norma UNI EN 10204, dello specifico lotto di materiale fornito .

Tutte le forniture di acciaio, per le quali sussista l'obbligo della Marcatura CE, devono essere accompagnate dalla "Dichiarazione di prestazione" di cui al Regolamento UE 305/2011, dalla prevista marcatura CE nonché dal certificato di controllo interno tipo 3.1, di cui alla norma UNI EN 10204, dello specifico lotto di materiale fornito .

Il riferimento agli attestati comprovanti la qualificazione del prodotto deve essere riportato sul documento di trasporto.

Le forniture effettuate da un distributore devono essere accompagnate da copia dei documenti rilasciati dal fabbricante e completati con il riferimento al documento di trasporto del distributore stesso.

Nel caso di fornitura in cantiere non proveniente da centro di trasformazione, il Direttore dei Lavori, prima della messa in opera, è tenuto a verificare quanto sopra indicato ed a rifiutare le eventuali forniture non conformi, ferme restando le responsabilità del fabbricante.

A.2 - 6.3.5. Prove di qualificazione e verifiche periodiche della qualità

I laboratori incaricati, di cui all'art. 59 del DPR n. 380/2001, devono operare secondo uno specifico piano di qualità approvato dal Servizio Tecnico Centrale.

I certificati di prova emessi devono essere uniformati ad un modello standard elaborato dal Servizio Tecnico Centrale.

I relativi certificati devono contenere almeno:

- l'identificazione dell'azienda produttrice e dello stabilimento di produzione;
- l'indicazione del tipo di prodotto e della eventuale dichiarata saldabilità;
- il marchio di identificazione del prodotto depositato presso il Servizio Tecnico Centrale;
- gli estremi dell'attestato di qualificazione nonché l'ultimo attestato di conferma della qualificazione (per le sole verifiche periodiche della qualità);
- la data del prelievo, il luogo di effettuazione delle prove e la data di emissione del certificato;
- le dimensioni nominali ed effettive del prodotto ed i risultati delle prove eseguite;
- l'analisi chimica per i prodotti dichiarati saldabili (o comunque utilizzati per la fabbricazione di prodotti finiti elettrosaldati);
- le elaborazioni statistiche previste nei §§: 11.3.2.12 e 11.3.3.5.

I prelievi in stabilimento sono effettuati, ove possibile, dalla linea di produzione.

Le prove possono essere effettuate dai tecnici del laboratorio incaricato, anche presso lo stabilimento del fabbricante, qualora le attrezzature utilizzate siano tarate e la loro idoneità sia accertata e documentata.

Di ciò ne deve essere fatta esplicita menzione nel rapporto di prova nel quale deve essere presente la dichiarazione del rappresentante del laboratorio incaricato relativa all'idoneità delle attrezzature utilizzate.

In caso di risultato negativo delle prove il fabbricante deve individuare le cause e apportare le opportune azioni correttive, dandone comunicazione al laboratorio incaricato e successivamente ripetere le prove di verifica.

Le specifiche per l'effettuazione delle prove di qualificazione e delle verifiche periodiche della qualità, ivi compresa la cadenza temporale dei controlli stessi, sono riportate rispettivamente nei seguenti paragrafi.

- § 11.3.2.12, per acciai per calcestruzzo armato in barre o rotoli, reti e tralicci elettrosaldati;
- § 11.3.3.5, per acciai per calcestruzzo armato precompresso;
- § 11.3.4.11, per acciai per carpenterie metalliche.

A.2 - 6.3.6. Controlli nei centri di trasformazione

Si definisce Centro di trasformazione un impianto esterno alla fabbrica e/o al cantiere, fisso o mobile, che riceve dal produttore di acciaio elementi base (barre, rotoli, reti, lamiere o profilati, profilati cavi, ecc.) e confeziona elementi strutturali direttamente impiegabili in cantiere, pronti per la messa in opera o per successive lavorazioni.

Il Centro di trasformazione può ricevere e lavorare solo prodotti qualificati all'origine, accompagnati dalla documentazione prevista al § 11.3.1.5.

Particolare attenzione deve essere posta nel caso in cui nel centro di trasformazione vengano utilizzati elementi base, comunque qualificati, ma provenienti da produttori differenti, attraverso specifiche procedure documentate che garantiscano la rintracciabilità dei prodotti.

I centri di trasformazione devono dotarsi di un sistema di controllo della lavorazione allo scopo di garantire che le lavorazioni effettuate assicurino il mantenimento della conformità delle caratteristiche meccaniche e geometriche dei prodotti alle presenti norme.

Il sistema di gestione della qualità del prodotto, che sovrintende al processo di trasformazione, deve essere predisposto in coerenza con la norma UNI EN ISO 9001.

Tutti i prodotti forniti in cantiere dopo l'intervento di un centro di trasformazione devono essere accompagnati da idonea documentazione, specificata nel seguito, che identifichi in modo inequivocabile il centro di trasformazione stesso e che consenta la completa tracciabilità del prodotto.

I centri di trasformazione sono tenuti ad effettuare controlli atti a garantire al prodotto finale caratteristiche meccaniche conformi alla classificazione dell'acciaio originale non lavorato.

Nell'ambito del processo produttivo deve essere posta particolare attenzione ai processi di piegatura e di saldatura. In particolare il Direttore Tecnico del centro di trasformazione deve verificare, tramite opportune prove, che le piegature e le saldature, anche nel caso di quelle non resistenti, non alterino le caratteristiche meccaniche originarie del prodotto. Per i processi sia di saldatura che di piegatura, si potrà fare utile riferimento alla normativa europea applicabile.

Il Direttore Tecnico dello stabilimento, nominato dal Centro di Trasformazione, dovrà essere abilitato all'esercizio di idonea professione tecnica.

I centri di trasformazione sono tenuti a dichiarare al Servizio Tecnico Centrale la loro attività, indicando le tipologie di prodotti trasformati, l'organizzazione, i procedimenti di lavorazione, nonché fornire copia della certificazione del sistema di gestione della qualità che sovrintende al processo di trasformazione. Ogni centro di trasformazione deve inoltre indicare un proprio logo o marchio che identifichi in modo inequivocabile il centro stesso; il sistema di gestione della qualità che sovrintende al processo di trasformazione, predisposto in coerenza con la norma UNI EN ISO 9001, deve essere certificato da parte di un organismo terzo indipendente, di adeguata competenza ed organizzazione, che opera in coerenza con la norma UNI CEI EN ISO/IEC 17021-1.

Nella dichiarazione di attività al Servizio Tecnico Centrale deve essere indicato l'impegno ad utilizzare esclusivamente elementi di base qualificati all'origine.

Alla dichiarazione deve essere allegata la nota di incarico al Direttore Tecnico del centro di trasformazione, controfirmata dallo stesso per accettazione ed assunzione delle responsabilità, ai sensi delle presenti norme, sui controlli sui materiali.

Il Servizio Tecnico Centrale, con il rilascio del relativo Attestato di "Denuncia dell'attività del centro di trasformazione", attesta l'avvenuta presentazione della dichiarazione di cui sopra.

I centri di trasformazione sono tenuti a comunicare ogni variazione rispetto a quanto dichiarato in sede di presentazione della denuncia di attività. Il Servizio Tecnico Centrale provvede ad aggiornare l'elenco della documentazione necessaria ad ottenere l'Attestato di "Denuncia dell'attività del centro di trasformazione", in base ai progressi tecnici ed agli aggiornamenti normativi che dovessero successivamente intervenire.

I Centri di Trasformazione devono far eseguire da laboratori di cui all'art. 59 del D.P.R. 380/2001 le prove indicate negli specifici paragrafi relativi a ciascun prodotto in acciaio (§11.3.2.10.3, § 11.3.4.11.2) e devono comunicare al Servizio Tecnico Centrale le eventuali variazioni apportate al processo di produzione depositato.

Ogni fornitura in cantiere di elementi presaldati, presagomati o preassemblati, proveniente da un Centro di trasformazione, deve essere accompagnata:

- a) da dichiarazione, su documento di trasporto, degli estremi dell'Attestato di "Denuncia dell'attività del centro di trasformazione", rilasciato dal Servizio Tecnico Centrale, recante il logo o il marchio del centro di trasformazione;
- b) dall'attestazione inerente l'esecuzione delle prove di controllo interno di cui ai paragrafi specifici relativi a ciascun prodotto (§ 11.3.2.10.3, § 11.3.3.5.3, § 11.3.4.11.2), fatte eseguire dal Direttore Tecnico del centro di trasformazione, con l'indicazione dei giorni nei quali la fornitura è stata lavorata. Qualora il Direttore dei Lavori lo richieda, può prendere visione del Registro di cui al § 11.3.2.10.3;
- c) da dichiarazione contenente i riferimenti alla documentazione fornita dal fabbricante ai sensi del § 11.3.1.5 in relazione ai prodotti utilizzati nell'ambito della specifica fornitura.
 Copia della documentazione fornita dal fabbricante e citata nella dichiarazione del centro di trasformazione, è consegnata al Direttore dei Lavori se richiesta.

Il Direttore dei Lavori è tenuto a verificare quanto sopra indicato ed a rifiutare le eventuali forniture non conformi, ferme restando le responsabilità del Centro di trasformazione. Gli atti di

cui sopra sono consegnati al collaudatore che, tra l'altro, riporta nel Certificato di collaudo gli estremi del Centro di trasformazione che ha fornito il materiale lavorato.

Il Centro di trasformazione fornisce copia della documentazione di cui ai precedenti punti b) e c) in caso di richiesta delle competenti autorità di vigilanza.

E' prevista la sospensione o, nei casi più gravi o di recidiva, la revoca dell'Attestato di "Denuncia dell'attività del centro di trasformazione" qualora il Servizio Tecnico Centrale accerti difformità fra i documenti forniti e l'attività effettivamente svolta, la non veridicità delle dichiarazioni prestate oppure la mancata ottemperanza alle prescrizioni contenute nella vigente normativa tecnica. I provvedimenti di sospensione e di revoca vengono adottati dal Servizio Tecnico Centrale.

A.3 – RELAZIONE SULLE STRUTTURE

OGGETTO: Nuovo Ecoquartiere a Ponticelli

COMMITTENTE: Comune di Napoli

COMUNE: Napoli

PROVINCIA: Napoli

LOCALITA': Via Isidoro Fuortes

DATA: maggio 2023

Revisione 00

A.3. RELAZIONE DI CALCOLO DELLE STRUTTURE

A.3 - 1.Premessa

La presente relazione si riferisce ai lavori di Realizzazione del Nuovo Ecoquartiere a Ponticelli con edifici multipiano aventi principalmente destinazione residenziale, con alloggi destinati al Social Housing e distribuiti tra i vari corpi di fabbrica, con il primo piano interrato adibito a parcheggi, box auto e locali destinati a fondo, a servizio delle abitazioni nel Comune di Napoli provincia di Napoli loc. Via Isidoro Fuortes di proprietà del Comune di Napoli.

Per la struttura in esame viene assunto un comportamento strutturale **non-dissipativo** ai sensi del § 7.2.2 del D.M. 17-01-2018 - -.

Tab. 7.2.I - Fattori di sovraresistenza για (fra parentesi quadre è indicato il numero dell'equazione corrispondente)

The last statements	Diamond street	Processories de constat	The cottonions in consols?			
Tipologia strutturale Elementi strutturali Progettazione in cap		Progettazione in capacita	CD"A"	CD"B"		
	Travi (§ 7.4.4.1.1)	Taglio	1,20	1,10		
	Pilastri (§ 7.4.4.2.1)	Pressoflessione [7.4.4]	1,30	1,30		
C.a. gettata in opera	F1125th (§ 7.44.2.1)	Taglio [7.4.5]	1,30	1,10		
g g	Nodi trave-pilastro (§ 7.4.43.1)	Taglio [7.4.6-7, 7.4.11-12]	1,20	1,10		
	Pareti (§ 7.4.4.5.1)	Taglio [7.4.13-14]	1,20	-		
C.a. prefabbricata	Collegamenti di tipo a) (§ 7.4.5.2.1)	Flessione e taglio	1,20	1,10		
a struttura intelaiata	Collegamenti di tipo b) (§ 7.4.5.2.1)	Flessione e taglio	1,35	1,20		
C.a. prefabbricata con pilastri incastrati alla base e orizzontamenti incernierati	Collegamenti di tipo fisso (§ 7.4.5.2.1)	Taglio	1,35	1,20		
A - 1-1-	Si impiega il	Si impiega il fattore di sovraresistenza γ _{ov} definito al § 7.5.1				
Acciaio	Colonne (§ 7.5.4.2)	Pressoflessione [7.5.10]	1,30	1,30		
Composta	Si impiega il	fattore di sovraresistenza γ _{ov} defi	nito al § 7.5.1			
acciaio-calcestruzzo	Colonne (§ 7.6.6.2)	Pressoflessione [7.6.7]	1,30	1,30		
Legno	Collegamenti		1,60	1,30		
Muratura armata con progettazione in capacità	Pannelli murari (§ 7.8.1.7)	Taglio	1,50			
Ponti	Si impiega	no i fattori di sovraresistenza defir	niti al § 7.9.5			

Nel caso di analisi lineare, la domanda sismica per strutture a comportamento sia non dissipativo, sia dissipativo, può essere ridotta utilizzando un opportuno fattore di comportamento q. I valori attribuibili a q variano in funzione del comportamento strutturale (dissipativo o non dissipativo) e dello stato limite considerato, legandosi all'entità delle plasticizzazioni, che a ciascuno stato limite si accompagnano.

Per ciascuno degli stati limite e dei metodi di analisi considerati, nella tabella successiva sono riportati:

- per l'analisi lineare, il comportamento strutturale, le modalità di modellazione dell'azione sismica e i limiti da attribuire al fattore di comportamento q, a seconda dello stato limite considerato;
- per l'analisi non lineare, il comportamento strutturale, le modalità di modellazione dell'azione sismica.

Tab. 7.3.I - Limiti su q e modalità di modellazione dell'azione sismica

STATI LIMITE		Lineare (Di	Pinamica e Statica) Non Linear		
		Dissipativo	Non Dissipativo Dinan		Statica
SLE	SLO	q = 1.0 § 3.2.3.4	q = 1.0 § 3.2.3.4		
SLE	SLD	q≤1,5 § 3.2.3.5	q ≤ 1,5 § 3.2.3.5	§ 7.3.4.1	§ 7.3.4.2
SLU	SLV	q≥1,5 § 3.2.3.5	q≤1,5 § 3.2.3.5		
	SLC				

Per *comportamento strutturale non dissipativo*, nella valutazione della domanda tutte le membrature e i collegamenti rimangono in campo elastico o sostanzialmente elastico; la domanda derivante dall'azione sismica e dalle altre azioni è calcolata, in funzione dello stato limite cui ci si riferisce, ma indipendentemente dalla tipologia strutturale e senza tener conto delle non linearità di materiale, attraverso un modello elastico (v. § 7.2.6)

Per *comportamento strutturale dissipativo*, nella valutazione della domanda un numero elevato di membrature e/o collegamenti evolvono in campo plastico, mentre la restante parte della struttura rimane in campo elastico o sostanzialmente elastico; la domanda derivante dall'azione sismica e dalle altre azioni è calcolata, in funzione dello stato limite cui ci si riferisce e della tipologia strutturale, tenendo conto della capacità dissipativa legata alle non linearità di materiale. Se la capacità dissipativa è presa in conto implicitamente attraverso il fattore di comportamento q (v. § 7.3), si adotta un modello elastico; se la capacità dissipativa è presa in conto esplicitamente, si adotta un'adeguata legge costitutiva (v. § 7.2.6).

Nel caso di comportamento strutturale dissipativo, la struttura deve essere concepita e dimensionata in modo tale che, sotto l'azione sismica relativa allo SLV, essa dia luogo alla formazione di un meccanismo dissipativo stabile fino allo SLC, nel quale la dissipazione sia limitata alle zone a tal fine previste.

I requisiti di regolarità della costruzione vengono valutati applicando quando stabilito dal \$7.2.1. del D.M. 17-01-2018.

Il valore del fattore di comportamento q da utilizzare per ciascuna direzione della azione sismica, dipendente dalla tipologia strutturale, è stato calcolato tramite la seguente espressione:

$$q = q_0 \times K_R$$
.

Le strutture sismo-resistenti in acciaio previste possono essere classificate come:

Strutture a telaio: sono composte da telai che resistono alle forze
orizzontali con un comportamento prevalentemente flessionale. In
queste strutture le zone dissipative sono principalmente collocate alle
estremità delle travi, in prossimità dei collegamenti trave-colonna,

dove si possono formare le cerniere plastiche e l'energia è dissipata per mezzo della flessione ciclica plastica.

• **strutture deformabili torsionalmente**, composte da telai e/o pareti, la cui rigidezza torsionale non soddisfa ad ogni piano la condizione $r^2/l_s^2 \ge 1$, nella quale:

 r^2 = raggio torsionale al quadrato è, per ciascun piano, il rapporto tra la rigidezza torsionale rispetto al centro di rigidezza laterale e la maggiore tra le rigidezze laterali, tenendo conto dei soli elementi strutturali primari, per strutture a telaio o a pareti (purché snelle e a deformazione prevalentemente flessionale), r^2 può essere valutato, per ogni piano, riferendosi ai momenti d'inerzia flessionali delle sezioni degli elementi verticali primari.

 I_s^2 = per ogni piano, è il rapporto fra il momento d'inerzia polare della massa del piano rispetto ad un asse verticale passante per il centro di massa del piano e la massa stessa del piano; nel caso di piano a pianta rettangolare I_s^2 = $(L^2 + B^2)/12$, essendo L e B le dimensioni in pianta del piano.

Per la struttura in esame viene assunto un comportamento strutturale **"non dissipativo"** ai sensi del § 7.2.1 e del § 7.5 del D.M. 17-01-2018.

Per le strutture a comportamento strutturale non dissipativo si adotta un fattore di comportamento q_{ND} , ridotto rispetto al valore minimo relativo alla CD"B" (Tab. 7.3.II NTC2018) secondo l'espressione:

$$1 \le q_{ND} = \frac{2}{3} q_{CD''B''} \le 1,5$$
 [7.3.2]

In tale caso il fattore di comportamento **q** viene posto pari a **1.07**, come riportato nel successivo paragrafo A.3 - 5.2, ovvero si adotta lo **spettro elastico** (SLE) e la capacità delle membrature e dei collegamenti deve essere valutata in accordo con le regole di cui al § 4.2 delle NTC2018, senza nessun requisito aggiuntivo.

Ai fini della definizione dell'azione sismica di progetto, si rende necessario valutare l'effetto della risposta sismica locale mediante l'individuazione di categorie di sottosuolo di riferimento. In base ai dati riportati nella relazione geologica il terreno di posa viene classificato come appartenente alla categoria **B**:

Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.

Categoria topografica: **T1**: Superficie pianeggiante, pendii e rilievi isolati con inclinazione media $i \le 15^{\circ}$

Rapporto h/H tra la quota del sito (h) e l'altezza rilievo topografico (H) = 1,00 Coefficiente di amplificazione topografica $S_T=1,00$.

Gli orizzontamenti, costituiti da solaio a lastre predalles al piano terra (h=5+34+6 cm) e da solai in polistirene espanso sinterizzato (EPS) tipo Plastbau ®Metal (h=5+30+5cm) agli altri piani con soletta superiore collaborante dello spessore rispttivamente 6 e 5 cm, sono dotati di rigidezza e resistenza tali da consentire la ridistribuzione delle forze orizzontali tra i diversi sistemi resistenti a sviluppo verticale, quindi posso essere considerati infinitamente rigidi nel loro piano medio. Nella definizione del modello, gli elementi non strutturali non appositamente progettati come collaboranti (quali tamponature e tramezzi) sono stati rappresentati unicamente in termini di massa.

Conformenente a quanto stabilito dal § 7.2.5 del D.M. 17-01-2018 il dimensionamento delle strutture di fondazione e la verifica di sicurezza del complesso fondazione-terreno sotto l'azione sismica vengono eseguite assumendo come azione in fondazione, trasmessa dagli elementi soprastanti:

quella derivante dall'analisi strutturale eseguita ipotizzando comportamento strutturale non dissipativo (v. § 7.3)

Per la verifica delle fondazioni allo Stato Limite Ultimo è stato utilizzato l'**Approccio 2** così come definito al §6.4.2.1. *Verifiche agli stati limite ultimi (SLU) - Fondazioni superficiali* del D.M. 17-01-2018 considerando i coefficienti parziali del tipo A1, M1, R3.

Le fondazioni adottate sono del tipo:

fondazione in c.a. di tipo indiretto a platea continua su pali e sono discretizzate nel programma di calcolo mediante elementi finiti trave su suolo alla Winkler.

Tabella 6.2.I - Coefficienti parziali per le azioni o per l'effetto delle azioni.

CARICHI	EFFETTO	Coefficiente Parziale γ_F (o γ_E)	EQU	(Al) STR	(A2) GEO
Domononti	Favorevole		0,9	1,0	1,0
Permanenti	Sfavorevole	γ _{G1}	1,1	1,3	1,0
Permanenti non strutturali (1)	Favorevole		0,0	0,0	0,0
Permanenti non sututuran	Sfavorevole	γ _{G2}	1,5	1,5	1,3
Variabili	Favorevole	N.	0,0	0,0	0,0
Variaoni	Sfavorevole	γQi	1,5	1,5	1,3

Tabella 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

W	F F F	Personal Property		
PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		
	COEFFICIENTE PARZIALE	γм		
Tangente dell'angolo di resistenza al taglio	$tan \phi'_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c'k	γ _{c'}	1,0	1,25
Resistenza non drenata	C _{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γ	γ_{γ}	1,0	1,0

 $\textbf{Tabella 6.4.I-Coefficienti parziali } \textit{\gamma}_{R} \textit{ per le verifiche agli stati limite ultimi di fondazioni superficiali.}$

	,,,,		
VERIFICA	COEFFICIENTE	COEFFICIENTE	COEFFICIENTE
	PARZIALE	PARZIALE	PARZIALE
	(R1)	(R2)	(R3)
Capacità portante	$\gamma_R = 1.0$	$\gamma_{\mathbb{R}} = 1.8$	$\gamma_{R} = 2,3$
Scorrimento	$\gamma_R = 1.0$	$\gamma_{\mathbb{R}} = 1,1$	$\gamma_R = 1,1$

Per la verifica degli elementi strutturali si è adottato il **metodo degli stati limite**.

A.3 - 2. Normativa tecnica di riferimento

Normativa di riferimento nazionale Tabella 1:

Legge 05/11/1971 n° 1086	Norme per le discipline delle opere di
	conglomerato cementizio armato normale e
	precompresso ed a struttura metallica
Ministero dei Lavori Pubblici. Circolare n. 11951, 14 febbraio 1974	Istruzioni relative alla Legge 5 novembre 1971
Legge 2 febbraio 1974, n. 64	Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche
D.M. 17 Gennaio 2018	Aggiornamento delle "Norme tecniche sulle
	Costruzioni"
D.M. LL.PP. del 11/03/1988	Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione
D.P.R. 6 giugno 2001 n. 380	Testo unico delle disposizioni legislative e
O.P.C.M. n. 3274,	Primi elementi in materia di criteri generali per
O.P.C.M. n. 3431 03.05.2005	Ulteriori modifiche ed integrazioni al O.P.C.M.

Normativa di riferimento regionale

Delibera della Giunta Regionale n. 29 del 09/02/2015	Delimitazione della zona gialla del piano di emergenza dell'area vesuviana.

Tabella 2: Normativa per consultazione

CIRC. MINISTERIALE LL.PP.	Istruzioni per	l'applicazione
21 Gennaio 2019, n. 7	dell'«Aggiornamento delle "Norr le costruzioni"» di cui al decreto gennaio 2018.	•
Eurocodice 2 – UNI EN 1992:	Progettazione delle strutture in	calcestruzzo
2005		
Eurocodice 7 – UNI EN 1997:	Progettazione geotecnica	
2005		
Eurocodice 8 - UNI EN 1998:	Progettazione delle strutture p	er la resistenza
2005	sismica	

A.3 - 3. Metodologie di calcolo, tipo di analisi e strumenti utilizzati.

L'analisi di tipo numerico è stata realizzata mediante i seguenti programmi:

- MasterSap 2022 R2, prodotto da AMV srl di Ronchi dei Legionari (Gorizia)

Origine e caratteristiche dei codici di calcolo

Titolo: MASTERSAP

Versione: 2022 R2

Produttore: AMV srl, Ronchi dei Legionari (RO)

Utente: Ing. Vincenzo Pujia

Licenza: 32740

Le procedure di verifica adottate seguono il metodo di calcolo degli **stati limite ultimo e di esercizio** applicando quanto previsto dal D.M. 17-01-2018 "Norme tecniche per le costruzioni".

E' stata utilizzata una **Analisi lineare dinamica (Analisi modale con spettro di risposta)** nel rispetto delle norme indicate in precedenza.

AMV S.r.I. Via San Lorenzo, 106 34077 Ronchi dei Legionari (Gorizia) Italy

Ph. +39 0481.779.903 r.a.
Fax +39 0481.777.125
E-mail: info@amv.it
www.amv.it
Cap. Soc. € 10.920,00 i.v.
P.lva: IT00382470318
C.F. e Iscriz. nel Reg. delle Imp. di GO
00382470318 - R.E.A. GO n° 048216

LICENZA D'USO SOFTWARE

Ragione Sociale: PUJIA ING. VINCENZO

Indirizzo: VIA MARZABOTTO, 24

Prov.: PG 06083 CAP: Città: BASTIA UMBRIA

075 8043468 -

Telefono: 075.8155230 CASA Fax: Email: ing.vincenzopujia@gmail.com

Partita IVA: 01544020504 Codice Fiscale: PJUVCN70L11M208V

DATI RELATIVI ALL'INSTALLAZIONE DEI PROGRAMMI (se diversi da quelli di fatturazione)

Nominativo

Indirizzo (Via, nº, CAP, città, prov. e tel.):

DESCRIZIONE PROGRAMMI

TITOLO PROGRAMMA	AUTORE / DISTRIBUT.	VERS.	N° LICENZA D'USO	DECORRENZA LICENZA D'USO	SCADENZA ASSIST/ MANUT.
MASTERSAP TOP	AMV	35,00	32740	30/10/2003	31/10/2023
ANALISI NON LINEARE TOP	AMV	35,00	32740	27/02/2020	31/10/2023
BIM TOP	AMV	35,00	32740	31/05/2017	31/10/2023
SOLUTORE PUSHOVER TOP	AMV	35,00	32740	20/07/2011	31/10/2023
MASTERARM TOP	AMV	35,00	32740	30/10/2003	31/10/2023
MASTERESIST TOP	AMV	35,00	32740	20/07/2011	31/10/2023
MASTERMURI TOP	AMV	35,00	32740	16/12/2016	31/10/2023
MASTERLEGNO TOP	AMV	35,00	32740	11/08/2013	31/10/2023
MASTERSTEEL TOP	AMV	35,00	32740	11/08/2013	31/10/2023
MASTERNODO TOP	AMV	35,00	32740	27/03/2012	31/10/2023
CAD C.A. TRAVI/PILASTRI E VIEW	AMV	35,00	36260	30/10/2003	31/10/2023
IMPAGINATORE DXF TOP	AMV	35,00	36260	20/05/2022	31/10/2023
SUITE CAD ACCIAIO TOP	AMV	35,00	38321	21/10/2020	31/10/2023
VERIFICHE RINFORZI	AMV	35,00	36491	20/12/2011	31/10/2023
VERIFICHE C.A. T.A/SL/S.L.U	AMV	35,00	36757	23/10/2012	31/10/2023
SOLAI TOP	AMV	35,00	38559	15/11/2021	31/10/2023
RESISTENZA AL FUOCO VERS. TOP	AMV	35,00	37663	21/11/2017	31/10/2023

AMV S.r.I. Via San Lorenzo, 106 34077 Ronchi dei Legionari (Gorizia) Italy

Ph. +39 0481.779.903 r.a. Fax +39 0481.777.125 E-mail: info@amv.it

Cap. Soc. € 10.920,00 i.v. P.lva: IT00382470318 C.F. e Iscriz. nel Reg. delle Imp. di GO 00382470318 - R.E.A. GO n° 048216

Attestato dell'affidabilità del codice di calcolo e delle procedure implementate nei prodotti software AMV In base al paragrafo 10.2 delle Norme Tecniche per le Costruzioni (D.M. 17.01.2018 e successivi aggiornamenti).

In base a quanto richiesto al par. 10.2 del D.M. 17/01/2018 (Norme Tecniche per le Costruzioni) il produttore e distributore AMV s.r.l. espone la seguente relazione riguardante il solutore numerico e, più in generale, la procedura di analisi e dimensionamento MasterSap. Si fa presente che sul proprio sito (www.amv.it) è disponibile sia il manuale teorico del solutore sia il documento comprendente i numerosi esempi di validazione. Essendo tali documenti (formati da centinaia di pagine) di pubblico dominio, si ritiene sufficiente proporre una sintesi, sia pure adeguatamente

esauriente, dell'argomento. Il motore di calcolo adottato da MasterSap, denominato LiFE-Pack, è un programma ad elementi finiti che permette l'analisi statica e dinamica in

ambito lineare e non lineare, con estensioni per il calcolo degli effetti del secondo ordine. Il solutore lineare usato in analisi statica ed in analisi modale è basato su un classico algoritmo di fattorizzazione multifrontale per matrici sparse che utilizza la tecnica di condensazione supernodale ai fini di velocizzare le operazioni. Prima della fattorizzazione viene eseguito un riordino simmetrico delle righe e delle colonne del sistema lineare al fine di calcolare un percorso di eliminazione ottimale che massimizza la sparsità del fattore. Il solutore modale è basato sulla formulazione inversa dell'algoritmo di Lanczos noto come Thick Restarted Lanczos ed è particolarmente adatto alla soluzione di problemi di grande e grandissima dimensione ovvero con molti gradi di libertà. L'algoritmo di Lanczos oltre ad essere supportato da una rigorosa teoria matematica, è estremamente efficiente e competitivo e non ha limiti superiori nella dimensione dei problemi, se non quelli delle risorse hardware della macchina utilizzata per il calcolo.

Per la soluzione modale di piccoli progetti, caratterizzati da un numero di gradi di libertà inferiore a 500, l'algoritmo di Lanczos non è ottimale e pertanto viene utilizzato il classico solutore modale per matrici dense simmetriche contenuto nella ben nota libreria LAPACK.

L'analisi con i contributi del secondo ordine viene realizzata aggiornando la matrice di rigidezza elastica del sistema con i contributi della matrice di rigidezza geometrica.

Un'estensione non lineare, che introduce elementi a comportamento multilineare, si avvale di un solutore incrementale che utilizza nella fase

iterativa della soluzione il metodo del gradiente coniugato precondizionato. Grande attenzione è stata riservata agli esempi di validazione del solutore. Gli esempi sono stati tratti dalla letteratura tecnica consolidata e i confronti sono stati realizzati con i risultati teorici e, in molti casi, con quelli prodotti, sugli esempi stessi, da prodotti internazionali di comparabile e riconosciuta validità. Il manuale di validazione è disponibile sul sito www.amv.it. E importante segnalare, forse ancora con maggior rilievo, che l'affidabilità del programma trova riscontro anche nei risultati delle prove di

collaudo eseguite su sistemi progettati con MasterSap. I verbali di collaudo (per alcuni progetti di particolare importanza i risultati sono disponibili anche nella letteratura tecnica) documentano che i risultati delle prove, sia in campo statico che dinamico, sono corrispondenti con quelli dedotti dalle analisi numeriche, anche per merito della possibilità di dar luogo, con MasterSap, a raffinate modellazioni delle strutture. In MasterSap sono presenti moltissime procedure di controllo e filtri di autodia-gnostica. In fase di input, su ogni dato, viene eseguito un controllo di compatibilità. Un ulteriore procedura di controllo può essere lanciata dall'utente in modo da individuare tutti gli errori gravi o gli eventuali difetti della modellazione. Analoghi controlli vengono eseguiti da MasterSap in fase di calcolo prima della preparazione dei dati per il solutore. I dati trasferiti al solutore sono facilmente consultabili attraverso la lettura del file di input in formato XML, leggibili in modo immediato dall'utente. Apposite procedure di controllo sono predisposte per i programmi di dimensionamento per l'acciaio, legno, alluminio, muratura etc. Tali controlli riguardano l'esito della verifica: vengono segnalati, per via numerica e grafica (vedi esempio a fianco), i casi in contrasto con le comuni tecniche costruttive e gli errori di dimensionamento (che bloccano lo sviluppo delle fasi successive della progettazione, ad esempio il disegno esecutivo). Nei casi previsti dalla norma, ad esempio qualora contemplato dalle disposizioni sismiche in applicazione, vengono eseguiti i controlli sull'a

geometria strutturale, che vengono segnalati con la stessa modalità dei difetti di progettazione.

Ulteriori funzioni, a disposizione dell'utente, agevolano il controllo dei dati e dei risultati. E' possibile eseguire una funzione di ricerca su tutte le proprietà (geometriche, fisiche, di carico etc) del modello individuando gli elementi interessati.

Si possono rappresentare e interrogare graficamente, in ogni sezione desiderata, tutti i risultati dell'analisi e del dimensionamento strutturale. Nel caso sismico viene evidenziata la posizione del centro di massa e di rigidezza del sistema.

Per gli edifici è possibile, per ogni piano, a partire delle fondazioni, conoscere la risultante delle azioni verticali orizzontali. Analoghi risultati sono disponibili per i vincoli esterni

Le altre procedure di calcolo, oltre a MasterSap, seguono la medesima impostazione teorica e lo stesso procedimento di validazione Nei relativi manuali viene fomita una esauriente descrizione delle basi teoriche e degli algoritmi impiegati, dei metodi e criteri usati per il dimensionamento strutturale e delle sezioni; vengono forniti esempi significativi che possono essere facilmente replicati, segnalando che si tratta

spesso di procedure di calcolo e di verifica, che per loro natura, non denotano particolari complessità teoriche e concettual

Il rilascio di ogni nuova versione dei programmi è sottoposta a rigorosi check automatici che mettono a confronto i risultati della release in esame con quelli già validati e realizzati da versioni precedenti. Inoltre, sessioni specifiche di lavoro sono condotte da personale esperto per controllare il corretto funzionamento delle varie procedure software, con particolare riferimento a quelle che sono state oppetto di interventi manutentivi o di aggiornamento.

AMV s.r.l Amministratore Unico Ing. Luciano Migliorini

A.3 - 4.Inquadramento geologico, morfologico ed idrogeologico del sito oggetto di intervento

L'area in esame si trova nella zona Nord - orientale della Città di Napoli, nel Quartiere Ponticelli, ad una quota di circa 27,0 m slm.

L'area si estende dal Sebeto alle pendici del Vesuvio ed è indicata come "depressione del Sebeto". Geomorfologicamente l'area è subpianeggiante ed occupa, in parte ciò che, prima della bonifica, era una zona paludosa formata dal tratto golenale del Sebeto.

In particolare la zona ove risiede l'attività in oggetto è delimitata geomorfologicamente, ad Est dalla piana alluvionale del Sebeto su cui insistono attualmente diversi corsi d'acqua secondari (osso reale, Fosso della Volla, Canale Cuzzone Lufrano,..ecc.), in parte con deflusso a cielo aperto ed in parte incanalati in opere sotterranea in corrispondenza delle opere d'arte della importante viabilità presente in zona.

Il bedrock della Città di Napoli è costituito prevalentemente da materiale piroclastico lapideo come il tufo spesso anche in affioramento e da materiale piroclastico sciolto come la pozzolana, il lapillo e la sabbia.

Dalle analisi delle caratteristiche fisico-meccaniche di detti terreni piroclastici, risulta in genere, sotto il profilo geotecnico, che essi sono piuttosto mediocri, in particolare per quanto riguarda il carico di rottura, ma che comunque sopportano abbastanza bene carichi normali ad esclusione dei livelli torbiferi che si ritrovano nella zona in questione che è posta al margine di quella piana alluvionale generata dal Sebeto ove i livelli torbiferi e di paleosuoli sono estremamente frequenti anche se di potenza modesta.

I tufi vulcanici costituiscono l'ossatura del sottosuolo e dei rilievi della città di Napoli, mentre le pozzolane, la pomice ed il lapillo ne rappresentano i materiali di ricoprimento.

L'area di studio si trova nella Municipalità 6, Quartiere Barra in Via Isidoro Fuortes ed è compresa tra Via Angelo Camillo De Mais e Via Francesco Benigno. Si attesta ad una quota media di circa 27,0 m slm ed è occupata, nella porzione Sud da un agglomerato di prefabbricati e, nella porzione Nord da aree incolte e in totale stato di abbandono.

Dall'analisi dei dati storici, cartografici soprattutto, è evidente che tutta la porzione di territorio in questione è stato profondamente modificato antropicamente con un'importante intensificazione operata a partire dalla fine del XIX secolo.

L'area in esame è pianeggiante e completamente urbanizzata, non presenta un reticolo idrografico di superficie, in quanto i corsi d'acqua, quando esistenti, sono stati coperti per permettere l'urbanizzazione della zona e, per lo più trasformati in fogne. È il caso del Collettore dello sperone, adiacente al tratto iniziale di strada di via Nuova delle Brecce, in cui confluiscono alcuni canali che raccolgono acque sorgentizie, quelle di scolo e reflue della zona, I canali, tutti coperti, sono: Canale Cucuzzone, Canale San Severino (S. Maria del Pianto), Canale Lamia (Porchiano) e Canale Sbauzzone (Poggioreale).

Dai dati provenienti da numerose indagini geognostiche e dall'esame della cartografia geologica e idrogeologica già richiamata all'inizio di questa relazione, l'area in questione è dominata Complesso dei depositi piroclastici rimaneggiati. Depositi piroclastici - alluvionali, flegrei e vesuviani,

sciolti e rimaneggiati in ambiente fluviale, palustre e costiero, talora con intercalazioni di pomici e ceneri.

Le indagini puntuali eseguite in Via Isidoro Fuortes i cui risultati sono stati confrontati con i dati storici, di letteratura e con i risultati di un'altra campagna di indagini condotta in zona, consentono di poter ipotizzare la presenza di una superficie piezometrica che si stabilizza a circa 13,00 m dal p.c. e si rinviene a circa 14,00 m dal p.c. in "limo sabbioso rimaneggiato..." cioè al contatto tra le piroclastiti sciolte e rimaneggiate per via alluvionale e il tufo.

L'area di studio si presenta morfologicamente come una piana posta ad una quota media sul livello del mare di circa 27,0 m ed è connotata da una destinazione d'uso agricola fino all'espansione urbanistica intervenuta a partire dalla seconda metà del XX secolo.

La stratigrafia dell'area è comunque dominata dalla presenza dei prodotti piroclastici del Somma-Vesuvio oltre che da quelli flegrei e, in particolare si è riscontrata la presenza di uno strato pressoché omogeneo di circa 2,0 m di potenza di materiale di riporto misto ed eterogeneo probabilmente dovuto alla realizzazione del complesso di prefabbricati (in parte oggi demoliti) realizzati per l'emergenza sisma del 1980; successivamente si rinviene uno strato di potenza di circa 6,0 m di piroclastiti sciolte a granulometria prevalentemente limosa, rimaneggiate alluvionalmente che includono, sul fondo, un paleosuolo di spessore variabile da un massimo di 2,0 m ad un minimo di 1,0 m.

Segue uno strato di sabbia scoriacea con presenza di abbondanti pomici e lapilli e potenza di $4,0\div6,0$ m che fa da tetto alla successione piroclastica tufacea che si spinge fino alla massima profondità indagata.

La consistenza del materiale tufaceo rinvenuto in sito, come mostrato dalle indagini dirette e dalle prove di laboratorio, non è omogenea, infatti, i carotaggi hanno mostrato una differenza nel risultato di estrazione anche se le caratteristiche reologiche sono certamente più omogenee così come rilevabile dai risultati delle prospezioni sismiche.

Di seguito sono riportati i valori dei principali parametri geotecnici estrapolati dai risultati delle analisi di laboratorio geotecnico e inseriti nel modello geologico proposto.

L'analisi dell'assetto stratigrafico e morfostrutturale sopra delineato, unitamente alle caratteristiche di permeabilità dei terreni in oggetto, non rappresenta una condizione predisponente all'instaurarsi di fenomeni erosionali e gravitativi.

I volumi di terreno interessati dalle opere in oggetto sono risultati sede di falda acquifera stabile ma possono essere interessati anche da acque d'infiltrazione che dalla superficie raggiungono la profondità di qualche metro.

Per i dettagli si rimanda alla relazione geologica redatta dal Dott. Geol. Fabio De Vincentiis.

A.3 - 4.1 Categoria del sottosuolo

Il sito in esame è stato parametrizzato, partendo dalla ricostruzione litostratigrafia effettuata a mezzo sismica di superficie tipo MASW e HVSR esequite nel sito sede del progetto.

Sulla base dei valori ottenuti dalla MASW, è possibile calcolare il parametro Vs30 il cui valore consente di classificare il sottosuolo sismicamente significativo dell'area in studio nell'ambito della scala di cui al punto 3.1 del D.M..17/01/2018. La classificazione ottenuta conduce, quindi, alla

individuazione del fattore di amplificazione S, che tiene conto del profilo stratigrafico del suolo e delle condizioni topografiche, secondo quanto disposto alle tabelle 3.2.II, 3.2.III e 3.2.V.

Per i valori ricavati dalla prospezione sismica di superficie MASW eseguita per il sito in esame, si ottiene il seguente valore del Vs30 pari a 374 m/sec.

I parametri assunti per la risposta locale del terreno su cui sorge l'edificio sono i seguenti:

- Categoria Sottosuolo: B
- Categoria Topografica: ST = 1

Per i dettagli si rimanda alla relazione geologica.

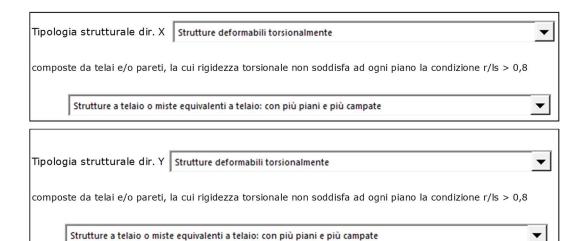
A.3 - 5.Progettazione per azioni sismiche cap. 7 DM 17-01-2018

A.3 - 5.1 Caratteristiche generali

PROGETTAZIONE PER AZIONI SISMICHE CAP. 7 D.M. 17-01-2018

ersione	4.20.00 Ing. Vince	enzo P
7.2.1 C	ARATTERISTICHE GENERALI DELLE COSTRUZIONI	
	REGOLARITA' IN PIANTA	
a)	la configurazione in pianta è compatta e approssimativamente simmetrica rispetto a due direzioni ortogonali, in relazione alla distribuzione di masse e rigidezze;	NO
b)	il rapporto tra i lati di un rettangolo in cui la costruzione risulta inscritta è inferiore a 4;	
		SI
c)	gli orizzontamenti possono essere considerati infinitamente rigidi nel loro piano rispetto agli elementi verticali e sufficientemente resistenti.	SI
	REGOLARITA' ALTEZZA	
d)	tutti i sistemi resistenti verticali (quali telai e pareti) si estendono per tutta l'altezza della costruzione;	SI
e)	massa e rigidezza rimangono costanti o variano gradualmente, senza bruschi cambiamenti, dalla base alla sommità della costruzione (le variazioni di massa da un orizzontamento all'altro non superano il 25 %, la rigidezza non si riduce da un orizzontamento a quello sovrastante più del 30% e non aumenta più del 10%); ai fini della rigidezza si possono considerare regolari in altezza strutture dotate di pareti o nuclei in c.a. o pareti e nuclei in muratura di sezione costante sull'altezza o di telai controventati in acciaio, ai quali sia affidato almeno il 50% dell'azione sismica alla base;	NO
f)	il rapporto tra la capacità e la domanda allo SLV non è significativamente diverso, in termini di resistenza, per orizzontamenti successivi (tale rapporto, calcolato per un generico orizzontamento, non deve differire più del 30% dall'analogo rapporto calcolato per l'orizzontamento adiacente); può fare eccezione l'ultimo orizzontamento di strutture intelaiate di almeno tre orizzontamenti;	NO
g)	eventuali restringimenti della sezione orizzontale della costruzione avvengano con continuità da un orizzontamento al successivo; oppure avvengano in modo che il rientro di un orizzontamento non superi il 10% della dimensione corrispondente all'orizzontamento immediatamente sottostante, né il 30% della dimensione corrispondente al primo orizzontamento. Fa eccezione l'ultimo orizzontamento di costruzioni di almeno quattro orizzontamenti, per il quale non sono previste limitazioni di restringimento.	SI

CONDIZIONE DI REGOLARITA' IN PIANTA: NON RISPETTATA CONDIZIONE DI REGOLARITA' IN ALTEZZA: NON RISPETTATA


0,80 $K_R =$

A.3 - 5.2 Determinazione fattore di comportamento

§ 7.2.2 CRITERI GENERALI DI PROGETTAZIONE

Per comportamento strutturale non dissipativo, nella valutazione della domanda tutte le membrature e i collegamenti rimangono in campo elastico o sostanzialmente elastico; la domanda derivante dall'azione sismica e dalle altre azioni è calcolata, in funzione dello stato limite cui ci si riferisce, ma indipendentemente dalla tipologia strutturale e senza tener conto delle non linearità di materiale, attraverso un modello elastico (v. § 7.2.6)

§ 7.4.3.1 TIPOLOGIE STRUTTURALI E FATTORI DI COMPORTAMENTO: COSTRUZIONI IN CALCESTRUZZO

Per le costruzioni non regolari in pianta, si possono adottare valori di alfa_u/alfa_1 pari alla media tra 1,0 ed i valori forniti per le diverse tipologie costruttive

	DIR.	x			DIR.	Y	
Coeff.	$a_u/a_1 =$	1,30	[-]	Coeff.	$a_u/a_1 =$	1,30	[-]
	$(a_u/a_1)_{medio} =$	1,15	[-]		$(a_u/a_1)_{medio} =$	1,15	[-]
$q_0 =$	2,00 =	2,00	[-]	$q_0 =$	2,00 =	2,00	[-]
	DIR.	X			DIR.	Y	
k _w (Fatto	re di riduzione	di q ₀)	1,000	k _w (Fatto	ore di riduzione	di q ₀)	1,000
k _w ×	q _o		2,000	k _w ×	q _o		2,000
1.	00 per strutture a	telaio e mi	ste equivalenti a telai				

 $k_{\rm w} = \begin{cases} 1,00 \text{ per strutture a telaio e miste equivalenti a telai} \\ 0,5 \le \left(1+\alpha_0\right)/3 \le 1 \text{ per strutture a pareti, miste equivalenti a pareti, torsionalmente deformabili} \end{cases}$

FATTORE COMPORTAMENTO DIR. X	$q_{(X)} = k_w \times q_0 \times K_R = 1,000 \times 2,00 \times 0,80 =$	1,60	[-]
FATTORE COMPORTAMENTO DIR. Y	$q_{(Y)} = k_w \times q_0 \times K_R = 1,000 \times 2,00 \times 0,80 =$	1,60	[-]

Per le strutture a comportamento non dissipativo dir. X $2/3 \ q_{CD^*B^*,X} = 1,07$ Per le strutture a comportamento non dissipativo dir. Y $2/3 \ q_{CD^*B^*,X} = 1,07$

1,00	≤	$q_{ND} = 2/3 \ q_{CD"B"}$	≤	1,5	>	q _{ND, X}	=	1,07	[-]
1,00	≤	$q_{ND} = 2/3 \ q_{CD"B"}$	≤	1,5	>	q _{ND, Y}	=	1,07	[-]

Essendo la struttura deformabile torsionalmente, come riportato, si ha:

$$q_0 = 2,00 \text{ e } q_{lim} = q_0 \cdot K_R \cdot k_W = 2,0 \cdot 0,8 \cdot 1,0 = 1,6$$

In questo caso si è ritenuto opportuno passare al comportamento non dissipativo (con un q_{ND} = 1,07); con q così basso il comportamento dissipativo potrebbe risultare infatti molto oneroso per il dimensionamento degli elementi strutturali.

A.3 - 6.Prestazioni di progetto, classe della struttura, vita utile e procedure di qualità

Le prestazioni della struttura e le condizioni per la sua sicurezza sono state individuate comunemente dal progettista e dal committente. A tal fine è stata posta attenzione al tipo della struttura, al suo uso e alle possibili conseguenze di azioni anche accidentali; particolare rilievo è stato dato alla sicurezza delle persone.

La classe della struttura è di tipo **II "Costruzioni il cui uso preveda normali affollamenti".**Risulta così definito l'insieme degli stati limite riscontrabili nella vita della struttura ed è stato accertato, in fase di dimensionamento, che essi non siano superati.

Altrettanta cura è stata posta per garantire la durabilità della struttura, con la consapevolezza che tutte le prestazioni attese potranno essere adeguatamente realizzate solo mediante opportune procedure da seguire non solo in fase di progettazione, ma anche di costruzione, manutenzione e gestione dell'opera. Per quanto riguarda la durabilità si sono presi tutti gli accorgimenti utili alla conservazione delle caratteristiche fisiche e dinamiche dei materiali e delle strutture, in considerazione dell'ambiente in cui l'opera dovrà vivere e dei cicli di carico a cui sarà sottoposta. La qualità dei materiali e le dimensioni degli elementi sono coerenti con tali obiettivi.

In fase di costruzione saranno attuate severe procedure di controllo sulla qualità, in particolare per quanto riguarda materiali, componenti, lavorazione, metodi costruttivi.

Saranno seguiti tutti gli inderogabili suggerimenti previsti nelle "Norme Tecniche per le Costruzioni".

A.3 - 7.Criteri e metodi di analisi e progettazione strutturale

L'analisi della struttura è stata condotta attraverso una modellazione spaziale con discretizzazione agli elementi finiti, idealizzando la struttura reale in un insieme di elementi di calcolo bidimensionali, collegati tra loro in corrispondenza dei nodi. Dopo aver definito le proprietà intrinseche dei materiali, e dopo aver assegnato a ciascuna delle parti costituenti il modello le relative proprietà geometriche e meccaniche, sono state applicate ad esse le azioni derivanti dai pesi propri e dalle finiture, nonché quelle dovute ai carichi variabili previsti dalla Normativa e illustrati nei successivi paragrafi. della presente relazione.

La struttura e il suo comportamento sotto le azioni statiche e dinamiche è stato adeguatamente valutato, interpretato e trasferito nel modello che si caratterizza per la sua impostazione completamente tridimensionale. A tal fine ai nodi strutturali possono convergere diverse tipologie di elementi, che corrispondono nel codice numerico di calcolo in altrettante tipologie di elementi finiti. Travi e pilastri, ovvero componenti in cui una dimensione prevale sulle altre due, vengono modellati

con elementi "beam", il cui comportamento può essere opportunamente perfezionato attraverso alcune opzioni quali quelle in grado di definire le modalità di connessione all'estremità. Eventuali elementi soggetti a solo sforzo normale possono essere trattati come elementi "truss" oppure con elementi "beam" opportunamente svincolati. Le pareti, le piastre, le platee ovvero in generale i componenti strutturali bidimensionali, con due dimensioni prevalenti sulla terza (lo spessore), sono stati modellati con elementi "shell" a comportamento flessionale e membranale. I vincoli con il mondo esterno vengono rappresentati, nei casi più semplici (apparecchi d'appoggio, cerniere, carrelli), con elementi in grado di definire le modalità di vincolo e le rigidezze nello spazio. Questi elementi, coniugati con i precedenti, consentono di modellare i casi più complessi ma più frequenti di interazione con il terreno, realizzabile tipicamente mediante fondazioni, pali, platee nonché attraverso una combinazione di tali situazioni. Il comportamento del terreno è sostanzialmente rappresentato tramite una schematizzazione lineare alla Winkler, principalmente caratterizzabile attraverso una opportuna costante di sottofondo, che può essere anche variata nella superficie di contatto fra struttura e terreno e quindi essere in grado di descrivere anche situazioni più complesse. Nel caso dei pali il comportamento del terreno implica anche l'introduzione di vincoli per la traslazione orizzontale.

I parametri dei materiali utilizzati per la modellazione riguardano il modulo di Young, il coefficiente di Poisson, ma sono disponibili anche opzioni per ridurre la rigidezza flessionale e tagliante dei materiali per considerare l'effetto di fenomeni fessurativi nei materiali.

Il calcolo viene condotto mediante analisi lineare, ma vengono considerati gli effetti del secondo ordine e si può simulare il comportamento di elementi resistenti a sola trazione o compressione.

I calcoli sono condotti adottando il metodo semiprobabilistico agli stati limite, con il soddisfacimento dei requisiti per la sicurezza precedentemente illustrati.

La struttura viene calcolata mediante analisi lineare dinamica, mediante cioè un'analisi modale con uno spettro di progetto, attraverso l'introduzione dei fattori di struttura q, avendo ipotizzato per la struttura un comportamento non dissipativo.

Per comportamento strutturale non dissipativo, nella valutazione della domanda tutte le membrature e i collegamenti rimangono in campo elastico o sostanzialmente elastico; la domanda derivante dall'azione sismica e dalle altre azioni è calcolata, in funzione dello stato limite cui ci si riferisce, ma indipendentemente dalla tipologia strutturale e senza tener conto delle non linearità di materiale, attraverso un modello elastico.

L'analisi sismica è condotta quindi con la tecnica dell'analisi modale con spettro di risposta. Essa determina una accelerazione di progetto in funzione dei periodi propri determinati dall'analisi modale, secondo lo spettro di risposta associato ad ogni stato limite ed al sito in cui è ubicata la struttura. L'azione sismica è quindi modellata attraverso lo spettro di progetto abbattuto da opportuni fattori di struttura q maggiori dell'unità, definiti al paragrafo 7.4.3.2 delle NTC2018, per la tipologia dell'edificio in esame. Al termine dell'analisi spettrale viene calcolato l'inviluppo dei contributi trovati per ogni modo di vibrare, secondo il metodo di combinazione modale.

Per effettuare l'analisi della struttura, è necessario effettuare una idealizzazione della struttura reale e generare un modello geometrico a cui associare caratteristiche statiche e di carico. La geometria della struttura è definita posizionando nello spazio l'insieme dei punti nodali della struttura.

I nodi sono stati quindi connessi con elementi finiti monodimensionali di tipo aste (pilastri e travi) o bidimensionali di tipo gusci (pareti e platee).

L'analisi dinamica viene condotta nelle due direzioni, secondo gli assi X ed Y. Le sollecitazioni, le deformazioni e gli spostamenti della struttura, derivanti dalle azioni sismiche, sono state combinate secondo la seguente espressione: 1,00 Ex + 0,30 Ey con rotazione dei coefficienti moltiplicativi e conseguente individuazione degli effetti più gravosi.

Per tenere conto della variabilità spaziale del moto sismico, nonché di eventuali incertezze nella localizzazione delle masse, gli effetti dell'eccentricità accidentale sono determinati mediante l'applicazione di coppie torcenti di valore pari alla risultante orizzontale della forza agente nel piano, moltiplicata per l'eccentricità accidentale del baricentro delle masse rispetto alla sua posizione di calcolo. L'eccentricità accidentale viene calcolata spostando il centro di massa di ogni piano in ogni direzione considerata, di una distanza non inferiore al 5% della dimensione massima del piano in direzione perpendicolare all'azione sismica.

È stata considerata l'irregolarità delle tamponature in pianta ponendo lo spostamento percentuale del centro di massa pari al 10%.

È stata considerata l'irregolarità delle tamponature in altezza (piano pilotis dovuto a corsie garage e diverse tramezzature rispetto ai piani superiori per via della diversa conformazione architettonica) attraverso l'incremento di un fattore 1,4 delle azioni di calcolo per gli elementi verticali del primo livello (piano interrato).

Ad ogni livello, in corrispondenza delle combinazioni sismiche in SLV, secondo l'approccio delle NTC 2018, si procede con la valutazione dell'insorgenza di effetti del 2° ordine sui ritti a seguito degli spostamenti per effetto sismico (7.3.2), attraverso il calcolo del fattore θ .

L'interazione terreno-struttura si è ottenuta schematizzando la platea di fondazione con elementi finiti bidimensionali (gusci) secondo la teoria di Winkler, assumendo un opportuno coefficiente di sottofondo.

E' stata impiegata una **Analisi lineare dinamica (Analisi modale con spettro di risposta)** conforme al D.M. 17.01.2018 considerando tutti i modi di vibrare con massa partecipante superiore al 5% e comunque un numero di modi la cui massa partecipante totale sia superiore all'85%.

Per la combinazione degli effetti relativi ai singoli modi di vibrare è stata utilizzato il metodo **CQC** (combinazione quadratica completa degli effetti relativi a ciascun modo).

Agli effetti del dimensionamento è stato impiegato il **metodo semiprobabilistico degli stati limite ultimo e di esercizio**.

A.3 - 8.Criteri per la misura della sicurezza: Metodo di calcolo agli stati limite

In generale ai fini della sicurezza sono stati adottati i criteri contemplati dal metodo semiprobabilistico agli stati limite. In particolare sono stati soddisfatti i requisiti per la sicurezza allo stato limite ultimo (anche sotto l'azione sismica) ed allo stato limite di esercizio.

A.3 - 9. Schematizzazione delle azioni, condizioni e combinazioni di carico

Le azioni sono state schematizzate applicando i carichi previsti dalla norma. In particolare i carichi gravitazionali, derivanti dalle azioni permanenti o variabili, sono applicati in direzione verticale (ovvero – Z nel sistema globale di riferimento del modello). Le azioni del vento sono applicate

prevalentemente nelle due direzioni orizzontali o ortogonalmente alla falda in copertura. Le azioni sismiche, statiche o dinamiche, derivano dall'eccitazione delle masse assegnate alla struttura in proporzione ai carichi a cui sono associate per norma. I carichi sono suddivisi in più condizioni elementari di carico in modo da poter generare le combinazioni necessarie.

A.3 - 10. Combinazioni di carico statiche

Le combinazioni di carico s.l.u. sono ottenute mediante diverse combinazioni dei carichi permanenti ed accidentali in modo da considerare tutte le situazioni più sfavorevoli agenti sulla struttura. I carichi vengono applicati mediante opportuni coefficienti parziali di sicurezza, considerando l'eventualità più gravosa per la sicurezza della struttura.

Risultano introdotte specifiche combinazioni di carico per valutare lo stato limite di esercizio (tensioni, fessurazione, deformabilità).

Oltre all'impostazione spaziale delle situazioni di carico potenzialmente più critiche, in sede di dimensionamento vengono ulteriormente valutate, per le varie travate, tutte le condizioni di lavoro derivanti dall'alternanza dei carichi variabili, i cui effetti si sovrappongono a quelli dei pesi propri e dei carichi permanenti. Vengono anche imposte delle sollecitazioni flettenti di sicurezza in campata e risultano controllate le deformazioni in luce degli elementi.

A.3 - 11. Combinazioni di carico sismiche

Le combinazioni di carico s.l.u. statiche (in assenza di azioni sismiche) sono ottenute mediante diverse combinazioni dei carichi permanenti ed accidentali in modo da considerare tutte le situazioni più sfavorevoli agenti sulla struttura. I carichi vengono applicati mediante opportuni coefficienti parziali di sicurezza, considerando l'eventualità più gravosa per la sicurezza della struttura.

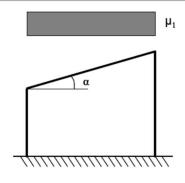
Le azioni sismiche sono valutate in conformità a quanto stabilito dalle norme e specificato nel paragrafo sulle azioni.

In sede di dimensionamento vengono analizzate tutte le combinazioni, anche sismiche, impostate ai fini della verifica s.l.u. Vengono anche processate le specifiche combinazioni di carico introdotte per valutare lo stato limite di esercizio (tensioni, fessurazione, deformabilità).

A.3 - 12. Le azioni applicate alla struttura

A.3 - 12.1 Peso proprio delle strutture

Viene valutato automaticamente sulla scorta delle caratteristiche geometriche degli elementi e considerando i seguenti valori dei pesi specifici:


ELEMENTI STRUTTURALI		
peso specifico calcestruzzo armato	25,00	kN/m³
peso specifico acciaio da carpenteria	78,50	kN/m³
ELEMENTI NON STRUTTURALI		
peso specifico massetto	22,00	kN/m³
peso specifico massetto alleggerito	12,00	kN/m³
peso specifico tamponatura ESTERNA	700	daN/m³
peso specifico tamponatura INTERNA	934	daN/m³

A.3 - 12.2 Azione della neve

CALCOLO DELL'AZIONE DELLA NEVE (§ 3.4 D.M. 17-01-2018)											
file: CARICHI TU_2018 vers. 4.50.0	00					Dott. I	ng. Vir	ncenzo Pujia			
Titolo:	NUOVO	NUOVO ECOQUARTIERE A PONTICELLI									
Normativa: Norme tecniche per le costruzioni D.M. 17.01.2018											
Provincia:	Napoli				Z	Zona:	III				
Altitudine s.l.m.:	27		[m]								
Carico neve al suolo:		q_{sk}	=	0,60	[kN/m ²]	per T _R =	50	anni			
Topografia:	Normale	2									
Coefficiente di esposizione:		CE	=	1,00							
Descrizione esposizione:	Aree in cui non è presente una significativa rimozione di neve sulla costruzione prodotta dal vento, a causa del terreno, altre costruzioni o alberi										
Coefficiente termico:		C_{t}	=	1,00							

Tipo di copertura:	AD UNA FALDA					
Parapetto estremità falda	no					
Inclinazione falda:	α	=	0	[°]	=	0,00%
Coefficiente di forma	μ ₁ (α)	=	0,80			
Carico da neve	$q_s(\alpha)$	=	0,48	[kN/m ²]	=	$\mu_1(\alpha) \times q_{sk} \times C_E \times C_t$
Carico da neve arrotondato:	q _s (α)	=	0,50	[kN/m ²]		

La condizione di carico deve essere utilizzata per entrambi i casi di carico con o senza vento

A.3 - 12.3 Azione del vento edifici con copertura piana

CALCOLO DELL'AZIONE DEL VENTO EDIFICI A PIANTA RETTANGOLARE CON COPERTURE PIANE, A FALDE, INCLINATE E CURVILINEE (§ 3.3 D.M. 17-01-2018 e C3.3.8.1 circolare n°7 del 21/01/2019)

file: CARICHI TU_2018 vers. 4.50.00 Dott. Ing. Vincenzo Pujia **NUOVO ECOQUARTIERE A PONTICELLI** Titolo: Normativa: Norme tecniche per le costruzioni D.M. 17.01.2018 e circolare n°7 del 21/01/2019 1 - Dati relativi al sito di costruzione **-**| Provincia: Zona geografica: 3 27 [m/s]V_{b,0} Parametri relativi all'area geografica (Tab. 3.3.I): 500 [m] a₀ 0,370 [1/s] Altitudine s.l.m.: 27 [m] Aree urbane (non di classe A), suburbane, Classe di rugosità del terreno: В industriali e boschive. Distanza dalla costa: < 10 km Categoria di esposizione del sito: III Parametri per definizione del coefficiente di esposizione [-] [m] [m] 0,20 0,10 5,00 (Tab. 3.3.II) ZONE 1,2,3,4,5 10 km 30 km IV IV Categoria II in zona 1,2,3,4 Categoria III in zona 5 Categoria III in zona 2,3,4,5 Categoria IV in zona 1 2 - Dati relativi alla costruzione 15 10 direzione del vento 0 5 10152025303540455055606570758085909510005 Tipologia di copertura: Coperture piane (rif. C3.3.8.1.2) 100,00 Lato ortogonale alla direzione del vento b = [m] Profondità edificio 15,00 [m] Altezza edificio (esclusi parapetti, ecc) 14,00 [m] h_{gronda}

Altezza parapetti o altri elementi analoghi:

Altezza massima edificio:

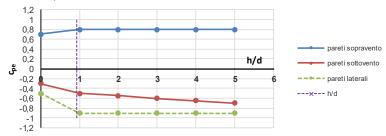
Strutture poste all'interno di edifici

NO

 ΔH_{cop}

h

[m]


[m]

0,00

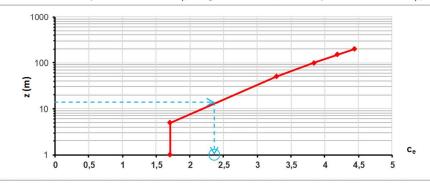
14,00

3 - PARETI VERTICALI [§3.3.8.1.1]				
Classificazione edificio [§C3.3.8.1.1.1]:	h/b	=	0,14	edificio basso
	h/d	=	0,93	
Altezza di riferimento	Z _e	=	14,00	[m]

 $I\ coefficienti\ globali\ c_{\it pe}\ da\ assumere\ sulle\ pareti\ di\ un\ edificio\ a\ pianta\ rettangolare\ sono\ riportati\ nel\ grafico:$

Coefficiente di forma pareti sopravento:	C _{pe}	=	+0,793	[-]
Coefficiente di forma pareti sottovento:	C _{pe}	=	-0,487	[-]
Coefficiente di forma pareti laterali:	C _{pe}	=	-0,900	[-]

4.a - COPERTURE PIANE [§3.3.8.1.1]				
Altezza di riferimento inclusi parapetti, ecc.	Z _e	=	14,00	[m]
Profondità fascia sopravento	e = min(b/2; h)	=	14,00	[m]
Coefficiente di forma fascia sopravento di profondità e	C _{pe,A}	=	-0,800	[-]
Coefficiente di forma fascia sottovento restanti zone	C _{pe,B} ⁺	=	+0,200	[-]
Coefficiente di forma fascia sottovento restanti zone	C _{pe,B}	=	-0,200	[-]


5 - PRESSIONI INTERNE [§3.3.8.5]

Le pressioni interne agli edifici dipendono dalla superficie delle aperture che questi presentano verso l'esterno.

Costruzioni
○ Costruzioni stagne
o per almeno due facce dell'edificio l'area totale delle aperture presenti su ciascuna faccia supera il 30% della superficie totale della faccia stessa
Edificio con una superficie dotata di un'area totale di aperture pari ad almeno il doppio della somma delle aree delle aperture presenti sulle rimanenti superfici
Calificio con una superficie dotata di un'area totale di aperture pari ad almeno il triplo della somma delle aree delle aperture presenti sulle rimanenti superfici
● Edificio dotato di porosità distribuita in maniera circa uniforme

Coeff. di forma pressione interna (valore positivo):	c _{pi} +	=	+0,200	[-]
Coeff. di forma pressione interna (valore negativo)	c _{pi} -	=	-0,300	[-]

6 - CALCOLO DELL'AZIONE DEL VENTO			
Coefficiente dinamico: c _d	=	1,00	[-]
Coefficiente di topografia: ct	=	1,00	[-]
Coefficiente di altitudine [#3.3.1.b NTC 2018] c _a	=	1,000	[-]
Velocità di riferimento del vento $v_{b,0}*c_a$ v_b	=	27,00	[m/s]
Proprietà della costruzione CNR-DT 207-R1-2018 Tab. A.I			-
Periodo di ritorno convenzionale (tab. A.I CNR-DT 207-R1-2018)	=	50	[anni]
Vita nominale della costruzione V _N	=	50	[anni]
Periodo di ritorno di riferimento $T_{R0} = max (T_0; V_N)$	=	50	[anni]
Tempo di ritorno di progetto $TR = TR,0$ \blacksquare	=	50	[anni]
Coefficiente di ritorno c _r 0.75*radq(1-0.2*LN[LN(1-1/TR)]	=	1,001	[-]
Velocità di riferimento di progetto $v_r = c_r \times v_b$	=	27,02	[m/s]
Densità dell'aria ρ	=	1,25	[kg/m³]
Pressione cinetica di riferimento q _r	=	456	[N/m ²]
Coefficiente di esposizione minimo per z < 5 m c _{e,min}	=	1,708	[-]
Coefficiente di esposizione alla gronda per z = 14 m $c_{e,gronda}$	=	2,360	[-]
Coefficiente di esposizione al colmo per z = 14 m $c_{e,colmo}$	=	2,360	[-]
Considerare i coeff. di forma pressione interna $c_{\it pi}$ congiuntamente ai coeff. di pre	ssione est	erna c _{pe}	V

Tipologia di copertura:		Coperture piane (rif. C3.3.8.1.2)						
DESCRIZIONE	altezza z [m]	C _e	C _{pe}	C _{pi} ⁺	C _{pi} -	C _{p,netto}	p [N/m²]	
(1) Parete sopravento	F 00	1 700	+0,793	+0,200		+0,593	+462	
	5,00	1,708	+0,793		-0,300	+1,093	+852	
	14.00	2.260	+0,793	+0,200		+0,593	+639	
	14,00	2,360	+0,793		-0,300	+1,093	+1.178	
	1400	2.260	+0,793	+0,200		+0,593	+639	
	14,00	2,360	+0,793		-0,300	+1,093	+1.178	
(2) Pavete estimante	14,00	2,360	-0,487	+0,200		-0,687	-740	
(2) Parete sottovento	14,00	2,360	-0,487		-0,300	-0,187	-201	
(3) Pareti laterali	14,00	2,360	-0,900	+0,200		-1,100	-1.185	
	14,00	2,360	-0,900		-0,300	-0,600	-646	
(4) Falda sopravento	14,00	2,360	-0,800	+0,200		-1,000	-1.077	
			-0,800		-0,300	-0,500	-539	
(vento perpendicolare alla direzione del colmo)		2.260	+0,000	+0,200		-0,200	-215	
	14,00	2,360	+0,000		-0,300	+0,300	+323	
(5) Falda sottovento	14.00	2.260	+0,200	+0,200		+0,000	+0	
	14,00	2,360	+0,200		-0,300	+0,500	+539	
(vento perpendicolare alla direzione del colmo)	14.00	2.260	-0,200	+0,200		-0,400	-431	
	14,00	2,360	-0,200		-0,300	+0,100	+108	
(6) Fascia sopravento	14.00	2.360	+0,000	+0,200		-0,200	-215	
fascia e (m)= 14,00	14,00	2,360	+0,000		-0,300	+0,300	+323	
(vento parallelo alla	14.00	2.260	+0,000	+0,200		-0,200	-215	
direzione del colmo)	14,00	2,360	+0,000		-0,300	+0,300	+323	
(7) Fascia sottovento	14.00	2.260	+0,000	+0,200		-0,200	-215	
(vento parallelo alla direzione del colmo)	14,00	2,360	+0,000		-0,300	+0,300	+323	

 $N.B.\ c_{pe}: + pressione\ (verso\ il\ basso), - depressione\ (verso\ l'alto);\ cpi: + sovrapressione\ interna\ (verso\ l'esterno)$

A.3 - 12.4 Azione del vento tettoie a falda singola

CALCOLO DELL'AZIONE DEL VENTO SU TETTOIE A FALDA SINGOLA (§ 3.3 D.M. 17-01-2018 e C3.3.8.2 circolare n°7 del 21/01/2019)

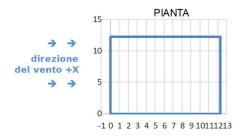
NUOVO ECOQUARTIERE A PONTICELLI Titolo:

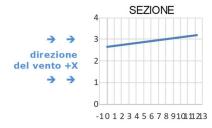
Dott. Ing. Vincenzo Pujia

Normativa: Norme tecniche per le costruzioni D.M. 17.01.2018 e circolare n°7 del 21/01/2019

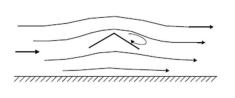
1 - Dati relativi al sito di costruzione

file: CARICHI TU_2018 vers. 4.50.00


Provincia:	Napoli		▼		Zona	geografica:	3	14
					V _{b,0}	=	27	[m/s]
Parametri relativi all'area geografica (Tab. 3.3.I):				a ₀	=	500	[m]	
				ks	=	0,370	[1/s]	
Altitudine s.l.r	m.:	as	=	27	[m]			
Classe di rugosità del terreno:			В	Aree urbane (re boschive.	non di classe A), suburbaı	ne, industrial	
Distanza dalla	a costa:				< 10 km			
Catagoria di	esposizione del sito			TTT		'		

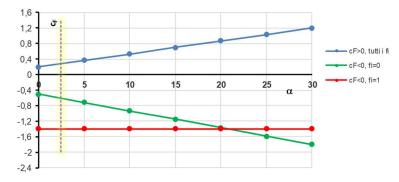


Parametri per definizione del coefficiente di esposizione						
k _r	Z ₀	Z _{min}				
[-]	[m]	[m]				
0,20	0,10	5,00				
(Tab. 3.3.II)						


	costa mare			500 <u>m</u>	750m	_
_	2 km	10 km	30 km			
Α	-1.5	IV	IV	V	V	V
В		III	III	IV	IV	IV
С		*	111	III	IV	IV
D	T.	П	II	П	III	**
*		oria II in oria III in	zona 1,2 zona 5	3,4		
*	Catego	oria III in	zona 5 zona 2,3			_

2 - Dati relativi alla costruzione

Tipologia di copertura:	Tettoie e pensiline a singola falda					
Inclinazione falda sull'orizzontale:		=	2,50	[°]		
Altezza massima falda:	h_{max}	=	3,20	[m]		
Lunghezza falda in direzione X	L_X	=	12,25	[m]		
Lunghezza falda in direzione Y	L_Y	=	12,25	[m]		
Altezza minima falda:	h_{min}	=	2,67	[m]		
Grado di bloccaggio in dir. X	фх	=	1,00	[-]		
Grado di bloccaggio in dir. Y	φγ	=	1,00	[-]		



Tettoia senza ostruzioni. $\omega=0$

3.a - TETTOIE A FALDA SINGOLA [§3.3.8.2.1] Altezza di riferimento z_e = 3,20 [m]

3.a.1 - Vento perpendicolare alla linea di colmo Inclinazione falda sull'orizzontale: $\alpha = 2,50$ [°]

I coefficienti di pressione complessiva per tettoie a semplice falda sono riportati nel grafico:

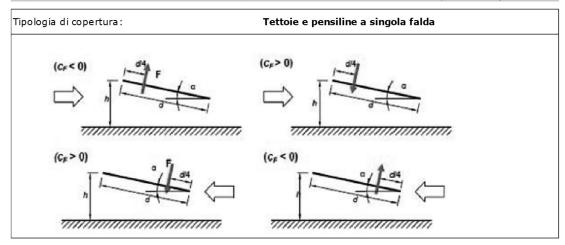
Coefficienti di forza per	Grado di bloccaggi φ	io	C _F (valori positivi)		c _F (valori negativi)
tettoie a falda singola	0,00		+0,283		-0,608
	1,00		+0,283		-1,400
Grado di bloccaggio dir. X	1,00		+0,28	3	-1,400
Valori positivi	Tu		i i valori di φ	c_F =	$x + 0.2 + \alpha/30$
Valori negativi	ori negativi		$\varphi = 0$		$0.5 - 1.3 \cdot \alpha/30$

Coefficiente di forza valore positivo:	C _F ⁺	=	+0,283	[-]
Coefficiente di forza valore negativo:	C _F	=	-1,400	[-]

 $\varphi = 1$

 $c_F = -1,4$

3.a.2 - Vento parallelo alla linea di colmo


Inclinazione falda sull'orizzontale: $\alpha = 0,00$ [°]

Le tettoie a semplice falda con vento agente parallelamente alla linea di colmo possono essere analizzate, in prima approssimazione, come tettoie piane a semplice falda (α =0°)

Coefficienti di forza per	Grado di bloccaggio φ	c _F (valori positivi)	c _F (valori negativi)
tettoie a falda singola	0,00	+0,200	-0,500
	1,00	+0,200	-1,400
Grado di bloccaggio dir. Y	1,00	+0,200	-1,400

Coefficiente di forza valore positivo:	C _F ⁺	=	+0,200	[-]
Coefficiente di forza valore negativo:	C _F	=	-1,400	[-]

4 - CALCOLO DELL'AZIONE DEL VENTO			
4 - CALCOLO DELL'AZIONE DEL VENTO		,	
Coefficiente dinamico: c_{d}	=	1,00	[-]
Coefficiente di topografia: c _t	=	1,00	[-]
Coefficiente di altitudine [#3.3.1.b NTC 2018] c _a	=	1,000	[-]
Velocità di riferimento del vento v _{b,0} *c _a v _b	=	27,00	[m/s]
Proprietà della costruzione CNR-DT 207-R1-2018 Tab. A.I			V
Periodo di ritorno convenzionale (tab. A.I CNR-DT 207-R1-201 T ₀	1=1	50	[anni]
Vita nominale della costruzione V _N	=	50	[anni]
Tempo di ritorno (§ 2.5.2. NTC 2018) $T_{R0} = max (T_0; V_N)$	=	50	[anni]
Tempo di ritorno di progetto $T_R = T_R,0$ T_R	=	50	[anni]
Coefficiente di ritorno c _r 0.75*radq(1-0.2*LN[LN(1-1/TR)]	=	1,001	[-]
Velocità di riferimento di progetto $v_r = c_r \times v_b$	=	27,02	[m/s]
Densità dell'aria ρ	=	1,25	[kg/m³]
Pressione cinetica di riferimento q _r	=	456	[N/m ²]
Coefficiente di esposizione minimo per z $< 5 \text{ m}$ $c_{e,min}$	=	1,708	[-]
Coefficiente di esposizione alla gronda per $z = 2,66 \text{ m}$ $c_{e,gronda}$	=	1,350	[-]
Coefficiente di esposizione al colmo per z = 3,2 m c _{e,colmo}	=	1,708	[-]
Pressione cinetica di riferimento $q_p(z)$	=	779	[N/m ²]

DESCRIZIONE	C _e	C _F	p [N/m²]	Sup. L ² [m ²]	d /4 [m]	F [kN]	q _{eq} = F/L [kN/m]
(1) Vento dir. X	1,708	+0,283	+221	150,06	3,06	+33,13	+2,70
φ = 1,00	1,708	-1,400	-1.091	150,06	3,06	-163,69	-13,36
(2) Vento dir. Y	1,708	+0,200	+156	150,06	3,06	+23,38	+1,91
φ = 1,00	1,708	-1,400	-1.091	150,06	3,06	-163,69	-13,36

N.B. : + pressione (dall'alto verso il basso), - depressione (dal basso verso l'alto)

A.3 - 12.5 Carichi da tamponature

TITOLO: TAMPONATURA ESTERNA A PIANO TERRA

Massa volumica apparente degli elementi forati di laterizio	$M_{\rm v}$	=	700,00	[kg/m³]
Costante per malta dei giunti di tipo normale	K	=	800	
Coefficiente variabile in funzione dello sviluppo dei giunti fra gli elementi su un metro quadrato di superficie di parete	а	=	0,12	1
Spessore della parete senza intonaco	S	=	0,38	[m]
Massa per unità di superficie $M_s = [M_v - (M_v - K) \times a] \times s$	M_s	=	268,00	[daN/m²]
Numero strati di intonaco	n	=	2	
Intonaco s=1,5 cm	q_{i}	=	30	[daN/m²]
Massa per unità di superficie intonaco	$M_{i,1}$	=	60,00	[daN/m²]
Peso specifico isolante termico	Yis	=	0,00	[daN/m³]
Spessore isolante	sp _{is}	=	0,00	[cm]
Massa per unità di superficie isolante	M_{is}	=	0,00	[daN/m²]
Numero strati di intonaco	n	=	0	
Intonaco s=1,5 cm	q_{i}	=	30	[daN/m²]
Massa per unità di superficie intonaco	$M_{i,2}$	=	0,00	[daN/m²]
Peso specifico rivestimento parete	γ	=	1700	[kg/m³]
Spessore rivestimento parete	sp	=	5,50	[cm]
Massa per unità di superficie rivestimento	M _{riv}	=	93,50	[daN/m²]
Massa per unità di superficie totale $M_s + M_{i,1} + M_{i,s} + M_{i,2} + M_{riv}$	M _{tot}	=	425,00	[daN/m²]
Altezza parete	h	=	3,70	[m]
Peso proprio parete per unità di lunghezza	G ₂	=	15,75	[kN/m]
Coeff. riduzione del peso per la presenza delle aperture		_	0,30	[-]
Peso proprio parete per unità di lunghezza	G ₂	=	11,10	[kN/m]

TITOLO: TAMPONATURA INTERNA - DIVISIONE TRA APPARTAMENTI PIANTO TERRA

Peso proprio parete per unità di lunghezza	G ₂	=	7,80	[kN/m]
Coeff. riduzione del peso per la presenza delle aperture			0,00	[-]
Peso proprio parete per unità di lunghezza	G ₂	=	7,80	[kN/m]
Altezza parete	h	=	3,80	[m]
Massa per unità di superficie totale $M_s + M_{i,1} + M_{i,s} + M_{i,2} + M_{riv}$	\mathbf{M}_{tot}	=	204,00	[daN/m²]
Massa per unità di superficie rivestimento	$\rm M_{riv}$	=	40,00	[daN/m²]
Spessore totale rivestimento parete	sp	=	5,00	[cm]
Peso specifico rivestimento parete (spessore singola lastra in cartongesso 12,5 mm)	γ	=	800	[kg/m³]
Massa per unità di superficie intonaco	$M_{i,2}$	=	0,00	[daN/m²]
Intonaco s=1 cm	q _i	=	20	[daN/m²]
Numero strati di intonaco	n	=	0	
Massa per unità di superficie isolante	M _{is}	=	8,40	[daN/m²]
Spessore isolante	sp _{is}	=	12,00	[cm]
Peso specifico isolante termico	Yis	=	70,00	[daN/m³]
Massa per unità di superficie intonaco	$M_{i,1}$	=	40,00	[daN/m²]
Intonaco s=1 cm	q _i	=	20	[daN/m²]
Numero strati di intonaco	n	=	2	
Massa per unità di superficie $M_s = [M_v - (M_v - K) \times a] \times s$	M_s	=	115,00	[daN/m²]
Spessore della parete senza intonaco	S	=	0,12	[m]
Coefficiente variabile in funzione dello sviluppo dei giunti fra gli elementi su un metro quadrato di superficie di parete	а	=	0,12	
Costante per malta dei giunti di tipo normale	K	=	800	
Massa volumica apparente degli elementi forati di laterizio	$M_{\rm v}$	=	934,00	[kg/m³]

TITOLO: TAMPONATURA ESTERNA CON RIVESTIMENTO A CAPPOTTO PIANI 1-2-3

Peso proprio parete per unità di lunghezza	G ₂	=	6,50	[kN/m]
Coeff. riduzione del peso per la presenza delle aperture			0,30	[-]
Peso proprio parete per unità di lunghezza	G ₂	=	9,25	[kN/m]
Altezza parete (al netto delle travi perimetrali intradossate)	h	=	2,80	[m]
Massa per unità di superficie totale $M_s + M_{i,1} + M_{i,s} + M_{i,2} + M_{riv}$	\mathbf{M}_{tot}	=	330,00	[daN/m²]
Massa per unità di superficie rivestimento	\mathbf{M}_{riv}	=	0,00	[daN/m²]
Spessore rivestimento parete	sp	=	0,00	[cm]
Peso specifico rivestimento parete	γ	=	0	[kg/m³]
Massa per unità di superficie intonaco	$M_{i,2}$	=	30,00	[daN/m²]
Intonaco s=1,5 cm	q _i	=	30	[daN/m²]
Numero strati di intonaco	n	=	1	
Massa per unità di superficie isolante	M_{is}	=	1,80	[daN/m²]
Spessore isolante	sp _{is}	=	10,00	[cm]
Peso specifico isolante termico	Yis	=	18,00	[daN/m³]
Massa per unità di superficie intonaco	$M_{i,1}$	=	30,00	[daN/m²]
Intonaco s=1,5 cm	q _i	=	30	[daN/m²]
Numero strati di intonaco	n	=	1	
Massa per unità di superficie $M_s = [M_v - (M_v - K) \times a] \times s$	M_s	=	268,00	[daN/m²]
Spessore della parete senza intonaco	S	=	0,35	[m]
Coefficiente variabile in funzione dello sviluppo dei giunti fra gli elementi su un metro guadrato di superficie di parete	а	=	0,12	•
Costante per malta dei giunti di tipo normale	K	=	800	
Massa volumica apparente degli elementi forati di laterizio	M _v	=	704,00	[kg/m³]

TITOLO: TAMPONATURA INTERNA - DIVISIONE TRA APPARTAMENTI PIANI 1-2-3

Massa volumica apparente degli elementi forati di laterizio	M _v	=	934,00	[kg/m³]
Costante per malta dei giunti di tipo normale	K	=	800	
Coefficiente variabile in funzione dello sviluppo dei giunti fra gli elementi su un metro quadrato di superficie di parete	а	=	0,12	1
Spessore della parete senza intonaco	s	=	0,12	[m]
Massa per unità di superficie $M_s = [M_v - (M_v - K) \times a] \times s$	M_s	=	115,00	[daN/m²]
Numero strati di intonaco	n	=	2	
Intonaco s=1 cm	q_{i}	=	20	[daN/m²]
Massa per unità di superficie intonaco	$M_{i,1}$	=	40,00	[daN/m²]
Peso specifico isolante termico	Yis	=	90,00	[daN/m³]
Spessore isolante	sp _{is}	=	12,00	[cm]
Massa per unità di superficie isolante	M _{is}	=	10,80	[daN/m²]
Numero strati di intonaco	n	=	0	
Intonaco s=1 cm	qi	=	20	[daN/m²]
Massa per unità di superficie intonaco	$M_{i,2}$	=	0,00	[daN/m²]
Peso specifico rivestimento parete (spessore singola lastra in cartongesso 12,5 mm)	γ	=	800	[kg/m³]
Spessore totale rivestimento parete	sp	=	5,00	[cm]
Massa per unità di superficie rivestimento	M_{riv}	=	40,00	[daN/m²]
Massa per unità di superficie totale $M_s + M_{i,1} + M_{i,s} + M_{i,2} + M_{riv}$	M _{tot}	=	206,00	[daN/m²]
Altezza parete	h	=	2,95	[m]
Peso proprio parete per unità di lunghezza	G ₂	=	6,10	[kN/m]
Coeff. riduzione del peso per la presenza delle aperture			0,00	[-]
Peso proprio parete per unità di lunghezza	G ₂	=	6,10	[kN/m]

TITOLO: DIVISORI INTERNI IN CARTONGESSO

Peso parete cartongesso a doppia orditura metallica con doppio rivestimento (2x12,5 mm)	M _s	=	50,00	[daN/m²]
Numero strati di intonaco	n	=	0	
Intonaco s=1 cm	q _i	=	20	[daN/m²]
Massa per unità di superficie intonaco	M _{i,1}	=	0,00	[daN/m²]
Peso specifico isolante termico	Yis	=	90,00	[daN/m³]
Spessore isolante	sp _{is}	=	8,00	[cm]
Massa per unità di superficie isolante	M _{is}	=	7,20	[daN/m²]
Numero strati di intonaco	n	=	0	
Intonaco s=1 cm	q _i	=	20	[daN/m²]
Massa per unità di superficie intonaco	M _{i,2}	=	0,00	[daN/m²]
Peso specifico rivestimento parete	γ	=	2200	[kg/m³]
Spessore totale rivestimento parete	sp	=	2,00	[cm]
Massa per unità di superficie rivestimento	M _{riv}	=	44,00	[daN/m²]
Massa per unità di superficie totale $M_s + M_{i,1} + M_{i,s} + M_{i,2} + M_{riv}$	M _{tot}	=	102,00	[daN/m²]
Altezza parete	h	=	2,70	[m]
Peso proprio parete per unità di lunghezza	G ₂	=	2,80	[kN/m]
Coeff. riduzione del peso per la presenza delle aperture			0,00	[-]
Peso proprio parete per unità di lunghezza	G ₂	=	2,80	[kN/m]

A.3 - 12.6 Carichi permanenti ed accidentali sui solai

CODICE CARICO	C1
EDIFICIO	Ecoquartiere Ponticelli
LIVELLO	Piano -1: interrato (parcheggi)
TIPO	Solaio su casseri a perdere
FASE	STATO DI PROGETTO

Ecoquar	tiere Ponticelli - Piano -1: interrato (parcheggi) - Solaio su c	asseri a perd	ere : STATO D	I PROGETTO				
N°	Descrizione	Altezza	Peso sp.	Carico	Coeff. Comb. SLU	Coeff.	Partecip	oazione
[-]	[-]	[mm]	[kN/m³]	[kN/m²]	γ	Ψο	Ψ1	Ψ2
1		-	-	0,00				
2		-	-	0,00	ĺ			
	Totale carich	ni permanenti	strutturali G ₁		1,30			
3	Casseri a perdere tipo IGLU e soletta c.a.	-	-	1,60				
4	Pavimento industriale	160	25,00	4,00				
	Totale carichi pe	rmanenti non	strutturali G2	5,60	1,50			
5	Rimesse e aree per traffico di veicoli (esclusi i ponti) - Cat. F - Rimesse, aree per traffico, parcheggio e sosta di veicoli leggeri (peso a pieno carico fino a 30 kN)	-	-	2,50				
		Totale caricl	ni variabili Q ₁	2,50	1,50	0,70	0,70	0,60
6	-	-	-	0,00				
	Totale carichi variabili Q ₂				1,50	0,00	0,00	0,00
	Totale carichi in combinazione	SLE rara G ₁ +0	G ₂ +Q ₁ +ψ ₀₂ Q ₂	8,10				
	Totale carichi in combinazione SLU γ_{G1} G	$i_1 + \gamma_{G2}G_2 + \gamma_{Q1}Q_1$	1+γ _{Q2} Ψ _{0,Q2} Q 2	12,15				
	Totale carichi in combinazione SLU γ_{G1} G	$i_1 + \gamma_{G2}G_2 + \gamma_{Q2}Q_1$	$2 + \gamma_{Q1} \Psi_{0,Q1} Q_1$					

CODICE CARICO	C2
EDIFICIO	Ecoquartiere Ponticelli
LIVELLO	Piano terra
TIPO	Solaio tipo A: interno edificio (negozi) - piastra tipo predalle h=5+34+6 cm
FASE	STATO DI PROGETTO

Ecoquar	tiere Ponticelli - Piano terra - Solaio tipo A: interno edificio (negozi) - pias	tra tipo preda	lle h=5+34+	6 cm : STATO	DI PRO	GETTO)
N°	Descrizione	Altezza	Peso sp.	Carico	Coeff. Comb. SLU			azione
[-]	[-]	[mm]	[kN/m³]	[kN/m ²]	γ	Ψο	Ψ1	Ψ2
1	P.P. Solaio lastre predalle con alleggerimento in polistirolo (Larghezza lastra: 120 cm, n. 3 travetti)	-	-	5,60				
2		-	-	0,00	1			
	Totale carich	ni permanenti	strutturali G1	5,60	1,30			
3	Pavimentazione	-	-	0,50				
4	Massetto di sottofondo	40	22,00	0,90	1			
5	Materassino acustico	10	0,30	0,05				
6	Massetto di sottofondo alleggerito	120	12,00	1,45				
7	Pannello isolante	100	0,35	0,05				
8	Incidenza elementi divisori con 2,00 <= G2 <= 3,00 kN/m	-	-	1,20				
9	Impianti appesi	-	-	0,15				
	Totale carichi pe	rmanenti non	strutturali G2	4,30	1,50			
10	Ambienti ad uso commerciale - Cat. D1 - Negozi	-	-	4,00				
		Totale caricl	ni variabili Q1	4,00	1,50	0,70	0,70	0,60
11	-	-	-	0,00				
		0,00	1,50	0,00	0,00	0,00		
	Totale carichi in combinazione	SLE rara G ₁ +0	G ₂ +Q ₁ +ψ ₀₂ Q ₂	13,90				
	Totale carichi in combinazione SLU γ_{G1} G			19,73				
	Totale carichi in combinazione SLU γ_{G1} G	$i_1 + \gamma_{G2}G_2 + \gamma_{Q2}Q_1$	$2 + \gamma_{Q1} \Psi_{0,Q1} Q_1$					

CODICE CARICO	C3
EDIFICIO	Ecoquartiere Ponticelli
LIVELLO	Piano terra
TIPO	Solaio tipo B: esterno edificio - piastra tipo predalle h=5+34+6 cm
FASE	STATO DI PROGETTO

N°	Descrizione	Altezza	Peso sp.	Carico	Coeff. Comb. SLU	Coeff.	Partecip	azione
[-]	[-]	[mm]	[kN/m³]	[kN/m²]	COIIID. SLO	Ψο	Ψ1	Ψ2
1	P.P. Solaio lastre predalle con alleggerimento in polistirolo (Larghezza lastra: 120 cm, n. 3 travetti)	-	-	5,60	•			
2		-	-	0,00				
	Totale carich	i permanenti	strutturali G1	5,60	1,30			
3	Pavimentazione tipo idrodrain	80	21,00	1,70				
4	Massetto di sottofondo	100	22,00	2,20				
5	Doppia guaina impermeabilizzante	10	0,05	0,05				
6	Incidenza elementi di arredo	-	-	2,00				
7	Impianti appesi	-	-	0,15				
	Totale carichi per	rmanenti non	strutturali G2	6,10	1,50			
8	Ambienti suscettibili di affollamento - Cat. C3 - Ambienti privi di ostacoli al movimento delle persone, quali musei, sale per esposizioni, aree d'accesso a uffici, ad alberghi e ospedali, ad atri di stazioni ferroviarie	-	-	5,00				
		Totale caricl	ni variabili Q ₁	5,00	1,50	0,70	0,70	0,60
9	Rimesse e aree per traffico di veicoli (esclusi i ponti) - Cat. G - Aree per traffico e parcheggio di veicoli medi (peso a pieno carico compreso fra 30 kN e 160 kN), quali rampe d'accesso, zone di carico e scarico merci.	-	-	14,00				
		Totale carich	ni variabili Q ₂	14,00	1,125	0,00	0,00	0 (*)
	Totale carichi in combinazione S	SLE rara G ₁ +0	G ₂ +Q ₁ +ψ ₀₂ Q ₂	16,70				
	Totale carichi in combinazione SLU γ _{G1} G	$_1+\gamma_{G2}G_2+\gamma_{Q1}Q$	$1+\gamma_{Q2}\psi_{0,Q2}\mathbf{Q}_2$	23,93				
	Totale carichi in combinazione SLU γ _{G1} G			37,43				

Altri cari	chi							
N°	Descrizione	Altezza	Peso sp.	Carico	Coeff. Comb. SLU	Coeff.	Partecip	azione
[-]	[-]	[mm]	[kN/m²]	[kN/m]	γ	Ψο	Ψ1	Ψ2
10				0,00				
11				0,00				
	Totale carichi permanenti non strutturali G ₂			0,00	1,50			

Combinazioni sismiche (Combinazioni SLV ed SLD) 3 - coefficiente $\Psi 2$ =0,0 per il sovraccarico Q2.

^(*) Durante la fase di costruzione, (G2+Q2) rappresenta il sovraccarico dovuto ai mezzi d'opera, prima della realizzazione delle opere di finitura.

Durante la vita utile della struttura, il carico Q2 rappresenta l'azione dovuta all'eventuale presenza dei mezzi antincendio.

1 - Si considera incompatibilità di Q2 rispetto all'altro carico variabile presente su tale impalcato, rappresentante il carico dovuto alla folla (Q1) ed il resto dei carichi variabili e ambientali applicati alla struttura, in modo da definire, in SLU ed SLE, combinazioni con Q2 principale e nessun altro carico secondario;

2 - Si considera una riduzione del carico Q2 pari al 25% in SLU ed SLE.

L'ipotesi 1 deriva dall'assunzione che, in fase di costruzione, tale impalcato rustico possa essere interessato da un carico distribuito (G2+Q2) dovuto ai mezzi d'opera, prima della realizzazione delle opere di finitura. Durante la vita utile della struttura, il carico Q2 rappresenta l'azione dovuta all'eventuale presenza dei mezzi antincendio.

L'ipotesi 2 deriva dall'assunzione che la probabilità della presenza del carico Q2, relativo ai mezzi d'opera durante l'esecuzione dei lavori e dei mezzi antincendio, contemporaneamente su tutto l'impalcato, sia bassa. Per tener conto della presenza localizzata dei mezzi, le verifiche statiche dei solai vengono eseguite con l'intero sovraccarico (G2+Q2), senza riduzioni.

CODICE CARICO	C4
EDIFICIO	Ecoquartiere Ponticelli
LIVELLO	interpiano livello 1
TIPO	Solaio tipo C: abitazioni sopra locali commerciali
FASE	STATO DI PROGETTO

Ecoquar	tiere Ponticelli - interpiano livello 1 - Solaio tipo C: abitazion	i sopra locali	commerciali :	STATO DI P	ROGETTO			
N°	Descrizione	Altezza	Peso sp.	Carico	Coeff. Comb. SLU	Coeff.	Partecip	azione
[-]	[-]	[mm]	[kN/m³]	[kN/m²]	γ	Ψο	Ψ1	Ψ2
1	P.P. Solaio in EPS tipo Plastbau 5+30+5	-	-	2,85				
2		-	-	0,00				
	Totale carich	ni permanenti	strutturali G1	2,85	1,30			
3	Pavimentazione	-	-	0,50				
4	Massetto di sottofondo	40	22,00	0,90				1
5	Materassino acustico	10	0,30	0,05				1
6	Massetto di sottofondo alleggerito	120	12,00	1,45				1
7	Incidenza elementi divisori con 2,00 <= G2 <= 3,00 kN/m	-	-	1,20				1
8	Controsoffitto pendinato intradosso solaio, sottostruttura e impianti appesi	-	-	0,50				
	Totale carichi pe	rmanenti non	strutturali G ₂	4,60	1,50			
9	Ambienti ad uso residenziale - Cat. A - Aree per attività domestiche e residenziali	-	-	2,00				
		Totale caricl	ni variabili Q ₁	2,00	1,50	0,70	0,50	0,30
10	-	-	-	0,00				
		0,00	1,50	0,00	0,00	0,00		
	Totale carichi in combinazione	SLE rara G ₁ +0	G ₂ +Q ₁ +ψ ₀₂ Q ₂	9,45				
	Totale carichi in combinazione SLU γ_{G1} G	$i_1 + \gamma_{G2}G_2 + \gamma_{Q1}Q_1$	$^{1}+\gamma_{Q2}\psi_{0,Q2}Q_{2}$	13,61				
	Totale carichi in combinazione SLU γ_{G1} G							

CODICE CARICO	C5
EDIFICIO	Ecoquartiere Ponticelli
LIVELLO	Interpiano livelli 2-3
TIPO	Solaio tipo D: abitazioni
FASE	STATO DI PROGETTO

Ecoquar	tiere Ponticelli - Interpiano livelli 2-3 - Solaio tipo D: abitazio	oni : STATO D	I PROGETTO					
N°	Descrizione	Altezza	Peso sp.	Carico	Coeff. Comb. SLU	Coeff.	Coeff. Partecipa	
[-]	[-]	[mm]	[kN/m³]	[kN/m²]	γ	Ψο	Ψ1	Ψ2
1	P.P. Solaio in EPS tipo Plastbau 5+30+5	-	-	2,85				
2		-	-	0,00				
	Totale carich	ni permanenti	strutturali G1	2,85	1,30			
3	Pavimentazione	-	-	0,50				
4	Massetto di sottofondo	40	22,00	0,90				
5	Materassino acustico	10	0,30	0,05				
6	Massetto di sottofondo alleggerito	120	12,00	1,45				
7	Incidenza elementi divisori con 2,00 <= G2 <= 3,00 kN/m	-	-	1,20				
8	Lastra rivestimento intradosso solaio, sottostruttura e impianti appesi	-	-	0,30				
	Totale carichi pe	rmanenti non	strutturali G2	4,40	1,50			
9	Ambienti ad uso residenziale - Cat. A - Aree per attività domestiche e residenziali	-	-	2,00				
		Totale caricl	ni variabili Q1	2,00	1,50	0,70	0,50	0,30
10	-	-	-	0,00				
	Totale carichi variabili Q ₂				1,50	0,00	0,00	0,00
	Totale carichi in combinazione	SLE rara G ₁ +0	G ₂ +Q ₁ +ψ ₀₂ Q ₂	9,25				
	Totale carichi in combinazione SLU γ_{G1} G	$G_1 + \gamma_{G2}G_2 + \gamma_{Q1}Q_1$	$1+\gamma_{Q2}\psi_{0,Q2}\mathbf{Q}_2$	13,31				
	Totale carichi in combinazione SLU γ_{G1} G	$i_1 + \gamma_{G2}G_2 + \gamma_{Q2}Q_1$	$2+\gamma_{Q1}\psi_{0,Q1}\mathbf{Q}_1$					

Commessa: CNAR.005-01-01.22.DEF

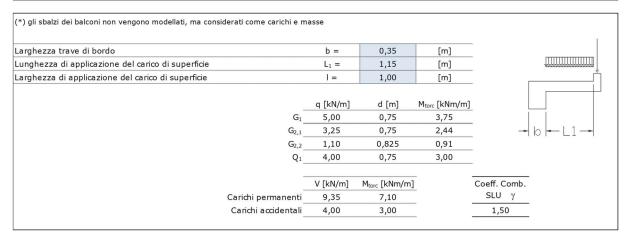
CODICE CARICO	C6
EDIFICIO	Ecoquartiere Ponticelli
LIVELLO	Copertura
TIPO	Solaio tipo E
FASE	STATO DI PROGETTO

Ecoquar	tiere Ponticelli - Copertura - Solaio tipo E : STATO DI PROGE	тто						
N°	Descrizione	Altezza	Peso sp.	Carico	Coeff. Comb. SLU	Coeff.	Partecip	azione
[-]	[-]	[mm]	[kN/m³]	[kN/m²]	γ	Ψο	Ψ1	Ψ2
1	P.P. Solaio in EPS tipo Plastbau 5+30+5	-	-	2,85				
2		-	-	0,00				
	Totale caricl	ni permanenti	strutturali G1	2,85	1,30			
3	Ghiaino di protezione	50	16,00	0,80				
4	Massetto di sottofondo alleggerito (sp. medio 10 cm)	100	12,00	1,20				
5	Materassino acustico	10	0,30	0,05	1			
6	Membrana impermeabilizzante e telo controllo vapore	-	-	0,05				
7	Pannello isolante in XPS	100	0,35	0,05				
8	modulo+struttura+zavorre impianto fotovoltaico	-	-	0,55				
9	Lastra rivestimento intradosso solaio, sottostruttura e impianti appesi	-	-	0,30				
	Totale carichi pe	rmanenti non	strutturali G2	3,00	1,50			
10	Neve (a quota ≤ 1000 m s.l.m.)	-	-	0,50				
		Totale caricl	ni variabili Q ₁	0,50	1,50	0,50	0,20	0,00
11	Coperture - Cat. H - Coperture accessibili per sola manutenzione e riparazione	-	-	0,50				
		Totale caricl	ni variabili Q ₂	0,50	1,50	0,00	0,00	0,00
12	Carico da cenere (zona gialla) comprensivo di incremento per effetto di possibili piogge concomitanti o successive all'eruzione vulcanica D.G.R. n. 29 del 09/02/2015	-	-	5,50				
	Totale carichi permanenti struttu iaino di protezione 50 16 issetto di sottofondo alleggerito (sp. medio 10 cm) 100 12 iterassino acustico 10 cm 10 0, imbrana impermeabilizzante e telo controllo vapore - nnello isolante in XPS 100 0, idulo+struttura+zavorre impianto fotovoltaico - stra rivestimento intradosso solaio, sottostruttura e pianti appesi Totale carichi permanenti non struttu ve (a quota ≤ 1000 m s.l.m.) - Totale carichi varia perture - Cat. H - Coperture accessibili per sola inutenzione e riparazione Totale carichi varia Totale carichi varia			5,50	1,50	0,00	0,00	0,00
	Totale carichi in combinazione	SLE rara G ₁ +0	G ₂ +Q ₁ +ψ ₀₂ Q ₂	6,35				
	Totale carichi in combinazione SLU γ _{G1} G	$i_1 + \gamma_{G2}G_2 + \gamma_{Q1}Q_1$	$_{1}+\gamma_{Q2}\psi_{0,Q2}\mathbf{Q}_{2}$	8,96				
				9,33				
	Totale carichi in combinazi	one Ecceziona	le G ₁ +G ₂ +A _d	11,35				

CODICE CARICO	C7
EDIFICIO	Ecoquartiere Ponticelli
LIVELLO	Copertura
TIPO	Solaio tipo F: locale tecnico zona impianti
FASE	STATO DI PROGETTO

Ecoquar	tiere Ponticelli - Copertura - Solaio tipo F: locale tecnico zona	a impianti : ST	TATO DI PROG	ETTO				
N°	Descrizione	Altezza	Peso sp.	Carico	Coeff. Comb. SLU	Coeff.	Partecip	azione
[-]	[-]	[mm]	[kN/m³]	[kN/m²]			Ψ1	Ψ2
1	P.P. Solaio in EPS tipo Plastbau 5+30+5	-	-	2,85				
2		-	-	0,00				
	Totale carich	i permanenti	strutturali G1	2,85	1,30			
3	Pavimentazione in calcestruzzo spazzolato	60	24,00	1,45	J			
4	Massetto di sottofondo autolivellante	50	21,00	1,05]			
5	Materassino acustico	10	0,30	0,05				
6	Membrana impermeabilizzante e telo controllo vapore	-	-	0,10				
7	Pannello isolante in XPS	100	0,35	0,05				
8	Lastra rivestimento intradosso solaio, sottostruttura e impianti appesi	-	-	0,30				
	Totale carichi pe	rmanenti non	strutturali G2	3,00	1,50			
9	Coperture - Cat. H - Coperture accessibili per sola manutenzione e riparazione	-	-	0,50				
		Totale caricl	ni variabili Q ₁	0,50	1,50	0,00	0,00	0,00
10	-	-	-	0,00				
		Totale caricl	ni variabili Q2	0,00	1,50	0,00	0,00	0,00
11	-	-	-	0,00				
	т	otale carichi e	eccezionali A _d	0,00	1,50	0,00	0,00	0,00
	Totale carichi in combinazione	SLE rara G ₁ +0	G ₂ +Q ₁ +ψ ₀₂ Q ₂	6,35				
	Totale carichi in combinazione SLU γ _{G1} G	$_1+\gamma_{G2}G_2+\gamma_{Q1}Q$	1+γ _{Q2} Ψ _{0,Q2} Q 2	8,96				
	Totale carichi in combinazione SLU γ_{G1} G	$_1+\gamma_{G2}G_2+\gamma_{Q2}Q$	$^{1}_{2}+\gamma_{Q1}\psi_{0,Q1}Q_{1}$	•				
	Totale carichi in combinazi	one Ecceziona	ile G ₁ +G ₂ +A _d	5,85				

Altri cari	ichi							
N°	Descrizione	Carico	Area solaio	Carico	Coeff. Comb. SLU	Coeff.	Partecip	oazione
[-]	[-]	[kN]	[m²]	[kN/m²]	γ	Ψο	Ψ1	Ψ2
11	Bollitore 2000 l (diamerto 1,36 m; peso a vuoto 400 kg)	24,000	7,80	3,10				
12		0,000						
	Totale carichi pe	3,10	1,50					


CODICE CARICO	C8
EDIFICIO	Ecoquartiere Ponticelli
LIVELLO	SCALA
TIPO	SCALA INTERNA IN C.A.
FASE	STATO DI PROGETTO

Ecoquar	tiere Ponticelli - SCALA - SCALA INTERNA IN C.A. : STATO D	PROGETTO						
N°	Descrizione	Altezza	Peso sp.	Carico	Coeff. Comb. SLU	Coeff.	Partecip	azione
[-]	[-]	[mm]	[kN/m³]	[kN/m²]	γ	Ψο	Ψ1	Ψ2
1	Soletta in c.a.	120	25,00	3,00				
2		-	-	0,00				
	Totale carich	ni permanenti	strutturali G1	3,00	1,30			
3	Gradini riportati in c.a.	-	-	2,20				
4	Intonaco	15	18,00	0,30]			
5	Rivestimento	-	-	0,50				
6		-	-					
7				0,00				
8		-	-					
	Totale carichi pe	rmanenti non	strutturali G2	3,00	1,50			
9	Ambienti ad uso residenziale - Cat. A - Scale comuni, balconi, ballatoi	-	-	4,00				
		Totale caricl	ni variabili Q ₁	4,00	1,50	0,70	0,50	0,30
	I							
10	-	-	-	0,00				
		Totale carich	ni variabili Q ₂	0,00	1,50	0,00	0,00	0,00
11	-	-	-	0,00				
	Т	otale carichi e	eccezionali A _d	0,00	1,50	0,00	0,00	0,00
	Totale carichi in combinazione s	SLE rara G ₁ +0	G ₂ +Q ₁ +ψ ₀₂ Q ₂	10,00				
	Totale carichi in combinazione SLU γ_{G1} G	$_1+\gamma_{G2}G_2+\gamma_{Q1}Q$	$1+\gamma_{Q2}\psi_{0,Q2}Q_2$	14,40				

CODICE CARICO	C9
EDIFICIO	Ecoquartiere Ponticelli
LIVELLO	BALCONI
ПРО	SBALZO C.A.
FASE	STATO DI PROGETTO

N°	Descrizione	Altezza	Peso sp.	Carico	Coeff. Comb. SLU	Coeff.	azione	
[-]	[-]	[mm]	[kN/m³]	[kN/m²]	Comb. SLO	Ψ0	Ψ1	Ψ2
1	Soletta in c.a.	200	25,00	5,00				
2		-		0,00	1			
	Totale carich	i permanenti	strutturali G1	5,00	1,30			
3	Pavimentazione			0,50				
4	Massetto di sottofondo	40	22,00	0,90]			
5	Massetto di sottofondo alleggerito	120	12,00	1,45	1			
6	Pannello isolante	-	-	0,10	1			
7	Intonaco	15	18,00	0,30	1			
8					1			
	Totale carichi pe	rmanenti non	strutturali G2	3,25	1,50			
9	Ambienti ad uso residenziale - Cat. A - Scale comuni, balconi, ballatoi	-	-	4,00				
		Totale caricl	ni variabili Qı	4,00	1,50	0,70	0,50	0,30
10	T-	_	-	0,00				_
		Totale caricl	ni variabili Q2	0,00	1,50	0,00	0,00	0,00
11	-	-	-	0,00				
	Т	otale carichi e	eccezionali A _d	0,00	1,50	0,00	0,00	0,00
	Totale carichi in combinazione s	SLE rara G ₁ +0	$G_2 + Q_1 + \psi_{02}Q_2$	12,25				
	Totale carichi in combinazione SLU γ_{GI} G	$_1+\gamma_{G2}G_2+\gamma_{Q1}Q$	1 + γQ2Ψ0,Q2 Q 2	17,38				
	Totale carichi in combinazione SLU γ_{GI} G	$_1+\gamma_{G2}G_2+\gamma_{Q2}Q$	$2+\gamma_{Q1}\psi_{0,Q1}\mathbf{Q}_{1}$					
	Totale carichi in combinazi	one Ecceziona	ale G ₁ +G ₂ +A _d	8,25				

Altri car	ichi							
N°	Descrizione	Area	Peso sp.	Carico	Coeff. Comb. SLU	Coeff.	Partecip	azione
[-]	[-]	[m²]	[kN/m³]	[kN/m]	γ	Ψο	Ψ1	Ψ2
11	Cordolo perimetrale	0,023	25,00	0,60				
12	Parapetto			0,50				
	Totale carichi pe	1,10	1,50					

CODICE CARICO	C10
EDIFICIO	Ecoquartiere Ponticelli
LIVELLO	Copertura
TIPO	Grigliato appoggio impianti
FASE	STATO DI PROGETTO

N°	Descrizione	Altezza	Peso sp.	Carico	Coeff. Comb. SLU	Coeff.	Partecip	azione
[-]	[-]	[mm]	[kN/m³]	[kN/m²]	γ	Ψο	Ψ1	Ψ2
1	Peso proprio travi (valutato in base al profilo)	-	-					
2		-	-	0,00	ĺ			
	Totale cario	hi permanenti	strutturali G1		1,30			
3	grigliato metallico	-	-	0,50				
4		-	-					
5		-	-					
6		-	-]			
7				0,00	J			
8		-	-					
	Totale carichi pe	ermanenti non	strutturali G2	utturali G ₂ 0,50 1,50				
9	Coperture - Cat. H - Coperture accessibili per sola manutenzione e riparazione	-	-	0,50				
		Totale caric	hi variabili Q ₁	0,50	1,50	0,00	0,00	0,00
		1						
10	-	-	-	0,00				
		Totale caric	hi variabili Q ₂	0,00	1,50	0,00	0,00	0,00
11	-	-	-	0,00				
		Totale carichi	eccezionali A _d	0,00	1,50	0,00	0,00	0,00
	Totale carichi in combinazione	SLE rara G ₁ +0	$G_2+Q_1+\psi_{02}Q_2$	1,00				
	Totale carichi in combinazione SLU γ _{G1}	$G_1 + \gamma_{G2}G_2 + \gamma_{Q1}G_1$	2 1+γ _{Q2} ψ _{0,Q2} Q 2	1,50				
	Totale carichi in combinazione SLU γ _{G1}	$G_1 + \gamma_{G2}G_2 + \gamma_{Q2}G_2$) ₂ +γ _{Q1} ψ _{0,Q1} Q ₁					
	Totale carichi in combinaz	ione Eccezion	ale G ₁ +G ₂ +A _d	0,50				

Altri cari	chi							
N°	Descrizione	Carico	Area solaio	Carico	Coeff. Comb. SLU	Coeff.	Partecip	oazione
[-]	[-]	[kN]	[m²]	[kN/m²]	γ	Ψο	Ψ1	Ψ2
11		8,300	3,66	2,50				
12		0,000						
	Totale carichi pe	2,50	1,50					
		,	, and the second					

A.3 - 12.7 Spinte dei rinterri sulle pareti perimetrali

Le spinte prodotte dal terreno a tergo delle pareti perimetrali del piano interrato sono valutate come seque:

 spinta del terreno in condizioni statiche: la spinta e stata calcolata considerando un cuneo di terreno dietro la struttura in stato di equilibrio limite attivo. Il valore totale S della spinta e pari a:

$$S = \frac{1}{2} \cdot \gamma \cdot K_a \cdot H^2$$

dove Ka e il coefficiente di spinta attiva

• spinta del terreno in condizioni sismiche: l'azione sismica, calcolata con metodi pseudostatici, viene rappresentata da un insieme di forze statiche orizzontali e verticali date dal prodotto della forza di gravita per un coefficiente sismico.

La valutazione dell'azione sismica, si effettua considerando il seguente coefficiente sismico orizzontale:

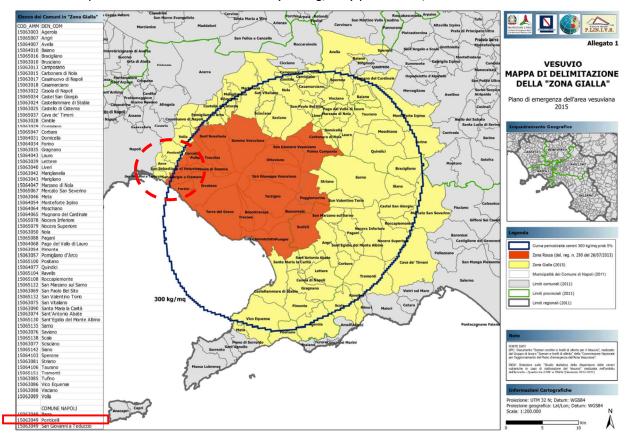
$$kh = \beta s * (amax /g)$$

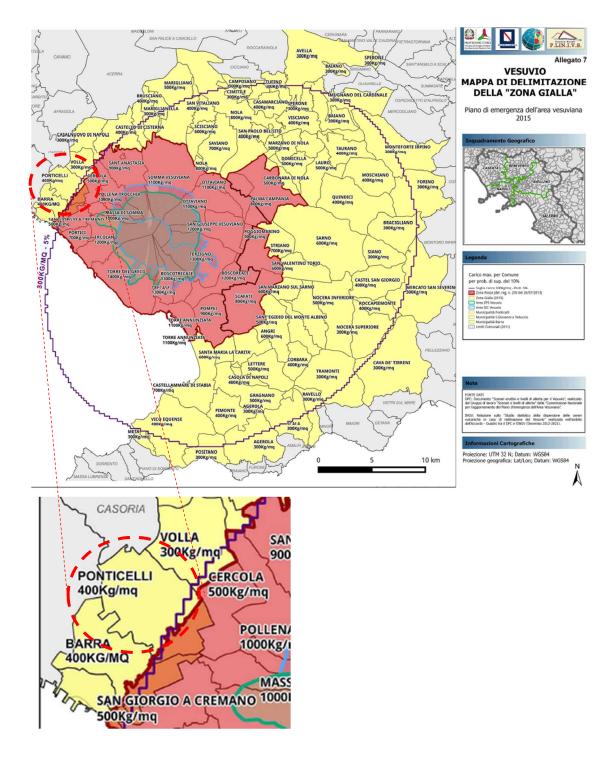
Per la valutazione delle spinte si considerano le seguenti caratteristiche geomeccaniche del terreno tipiche di un terreno di rinterro:

- $\gamma_k = 19 \text{ kN/m}^3 \text{ peso di volume naturale;}$
- $\gamma_k = 21 \text{ kN/m}^3 \text{ peso di volume saturo};$
- c_k' = 0 kPa coesione drenata;
- $\phi_{k}' = 22^{\circ}$ angolo di resistenza al taglio CD;

A.3 - 12.8 Azioni eccezionali

Per l'opera in progetto si considera l'azione eccezionale conseguente alla ricaduta di ceneri vulcaniche come da D.G.R: n. 29 del 09/02/2015 in base alla quale la località oggetto di intervento ricade in "Zona Gialla" del Piano Nazionale di Emergenza del Vesuvio.


Il carico da cenere è una "azione eccezionale", così come definita al paragrafo 3.6 delle Norme Tecniche per le Costruzioni di cui al D.M. del 17 gennaio 2018.


I valori di calcolo si definiscono in base allo scenario subpliniano di riferimento, considerando il carico da cenere asciutta, riportato nella cartografia di cui all'Allegato 7, che ha probabilità di superamento del 10%, così come valutato dall'Istituto Nazionale di Geofisica e Vulcanologia (INGV) e dal Centro Studi Plinivs dell'Università di Napoli Federico II – Centro di Competenza del Dipartimento della Protezione Civile (DPC) - in base alle statistiche del vento in quota.

Il carico da cenere asciutta deve essere opportunamente maggiorato per tener conto dell'effetto di possibili piogge concomitanti o successive all'eruzione vulcanica. Tale incremento è pari a 1,5 KN/mq, ovvero al corrispondente carico da cenere asciutta se inferiore.

Per tener conto degli effetti delle pendenze delle coperture, si applicano le medesime regole che le Norme Tecniche indicano per il carico da neve.

La Zona gialla della pianificazione nazionale di emergenza per rischio vulcanico del Vesuvio è l'area esposta a ricaduta di materiale piroclastico e comprende i comuni che ricadono anche parzialmente all'interno della curva di isocarico di 300 kg/m² (equivalenti a 30 cm di accumulo) con la probabilità di superamento del valore di carico (300 kg/m²) pari al 5%,

Per la località oggetto di intervento **Ponticelli** si ha:

 $q_cenere = 4,00 \text{ kN/m}^2$ $q_accumulo = 1,50 \text{ kN/m}^2$ $q_totale = 5,50 \text{ kN/m}^2$

A.3 - 12.9 Condizioni di carico

Per le svolgimento dei calcoli, sono state considerate le seguenti condizioni di carico:

- pesi permanenti strutturali;
- pesi permanenti non strutturali;
- variabili Cat. A ambienti ad uso residenziale;
- variabili Cat. C3 ambienti privi di ostacoli (piazza esterna);
- variabili Cat. D1 negozi;
- variabili Cat. F rimesse e parcheggi per carico fino a 30 KN;
- variabili Cat. G transito automezzi per carico superiore a 30 KN;
- variabili Cat. H coperture;
- variabili neve a quota ≤ 1000 m s.l.m..

A.3 - 12.10 Combinazioni di carico statiche e sismiche

Le azioni agenti sulla struttura allo Stato Limite Ultimo (F_d) sono fornite dalla seguente relazione fondamentale:

$$F_d = \gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{O2} \cdot Q_{k2} + \dots$$

Per gli stati limite di esercizio (SLE) si devono prendere in esame le combinazioni rare, frequenti e quasi permanenti con $\gamma_g = \gamma_q = 1$ e applicando ai valori caratteristici delle azioni variabili adeguati coefficienti ψ_0 , ψ_1 , ψ_2 .

Azione	9		Ψο	Ψ1	Ψ2
Categoria C Ambien	ti suscettibili	di	0,70	0,70	0,60
affollamento					
Vento			0,60	0,20	0,00
Neve (a quota ≤ 1000 m s	0,50	0,20	0,00		
Categoria H Coperture	0,00	0,00	0,00		

Nelle verifiche nei confronti degli stati limite ultimi strutturali (STR), geotecnici (GEO) e di equilibrio (EQU) delle fondazioni si assumono i coefficienti parziali delle azioni corrispondenti allo stato STR della tabella 2.6.I.

Tabella 2.6.I – Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

		Coefficiente γ _F	EQU	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,9 1,1	1,0 1,3	1,0 1,0
Carichi permanenti non strutturali ⁽¹⁾	favorevoli sfavorevoli	γ _{G2}	0,0 1,5	0,0 1,5	0,0 1,3
Carichi variabili	favorevoli sfavorevoli	γQi	0,0 1,5	0,0 1,5	0,0 1,3

⁽¹⁾Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare per essi gli stessi coefficienti validi per le azioni permanenti.

Le combinazioni agli stati limite di esercizio vengono espresse in forma convenzionale nel modo seguente:

$$G_1 + G_2 + P + Q_{1K} + \sum_{i=2}^{n} \psi_{0i} \cdot Q_{ik}$$

Combinazioni rare:

$$G_1 + G_2 + P + \psi_{11}Q_{1K} + \sum_{i=2}^{n} \psi_{2i} \cdot Q_{ik}$$

Combinazioni frequenti:

$$G_1 + G_2 + P + \sum_{i=1}^{n} \psi_{2i} \cdot Q_{ik}$$

Combinazioni quasi permanenti:

Combinazione sismica (SLV):

In zona sismica, oltre alle sollecitazioni derivanti dalle generiche condizioni di carico statiche, devono essere considerate anche le sollecitazioni derivanti dal sisma.

L'azione sismica è stata combinata con le altre azioni secondo la seguente relazione:

$$G_1+G_2+E+P+\sum\nolimits_j \psi_{2j}\cdot Q_{kj}$$

Gli effetti dell'azione sismica sono valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$\mathsf{G}_1 + \mathsf{G}_2 + \sum\nolimits_j \psi_{2j} \cdot \mathsf{Q}_{kj}$$

Stato Limite di Danno (SLD):

$$F_d = E + G_k + P_k + \left[\sum_i (\psi_{ii} Q_{ik}) \right]$$

Si evidenzia che, unicamente nel caso dell'azione variabile $Q_2=14,00 \text{ kN/m}^2$ di categoria G e sull'impalcato del piano terra (a quota Q.R. -0,30), nelle aree esterne, che identifica il peso dei mezzi d'opera ed antincendio, sono state fatte le seguenti ipotesi:

Combinazioni statiche e di esercizio (Combinazioni SLU ed SLE)

- 1. incompatibilita di Q_2 rispetto all'altro carico variabile presente su tale impalcato, rappresentante il carico dovuto alla folla (Q_1) ed il resto dei carichi variabili e ambientali applicati alla struttura, in modo da definire, in SLU ed SLE, combinazioni con Q_2 principale e nessun altro carico secondario;
- 2. riduzione del carico Q2 pari al 25% in SLU ed SLE.

L'ipotesi 1 deriva dall'assunzione che, in fase di costruzione, tale impalcato rustico possa essere interessato da un carico distribuito (G_2+Q_2) dovuto ai mezzi d'opera, prima della realizzazione delle opere di finitura. Durante la vita utile della struttura, il carico Q_2 rappresenta l'azione dovuta all'eventuale presenza dei mezzi antincendio.

L'ipotesi 2 deriva dall'assunzione che la probabilita della presenza del carico Q_2 , relativo ai mezzi d'opera durante l'esecuzione dei lavori e dei mezzi antincendio, contemporaneamente su tutto l'impalcato, sia bassa.

Per tener conto della presenza localizzata dei mezzi, le verifiche statiche dei solai vengono eseguite con l'intero sovraccarico (G_2+Q_2), senza riduzioni.

Combinazioni sismiche (Combinazioni SLV ed SLD)

3. coefficiente $\Psi 2 = 0,0$ per il sovraccarico Q_2 .

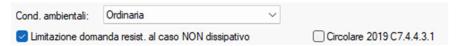
Tale ipotesi deriva dall'assunzione che la probabilità della presenza del carico Q_2 , relativo ai mezzi d'opera durante l'esecuzione dei lavori e dei mezzi antincendio, contemporaneamente ad un evento sismico, sia bassa.

A.3 - 13. Modellazione della struttura

La struttura ed il suo comportamento sotto le azioni statiche e dinamiche è adeguatamente valutato, interpretato e trasferito in un modello tridimensionale agli elementi finiti (modello FEM). Tale modello consente di effettuare un'analisi particolarmente reale, sia della distribuzione delle masse, sia delle effettive rigidezze e resistenze. Il modello rappresenta la struttura costituita da pareti, travi e pilastri, con i solai ai vari piani schematizzati come impalcati rigidi. L'interazione terrenostruttura viene tenuta in conto considerando un comportamento del terreno rappresentato tramite una schematizzazione elastico lineare alla Winkler, caratterizzata da una opportuna costante di sottofondo.

Le analisi, statiche e sismiche, sono eseguite con il metodo degli elementi finiti. Gli elementi finiti, utilizzati per la modellazione dello schema statico della struttura, sono i seguenti:

- Elemento tipo TRAVE: travi e pilastri schematizzati secondo le relative linee d'asse;
- Elemento tipo LASTRA-PIASTRA: pareti e platee;

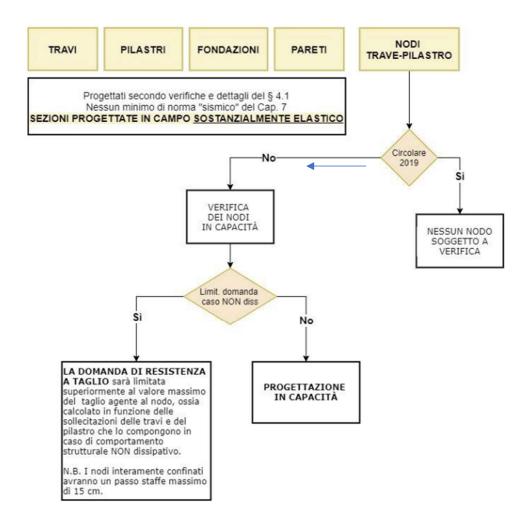

Agli elementi finiti descritti, sono assegnate idonee caratteristiche geometriche, i carichi e le masse di loro competenza.

I pilastri e le travi sono schematizzati considerando elementi finiti che modellino sforzo normale, flessione deviata, taglio deviato e momento torcente. Per tali elementi, sono previsti dei coefficienti riduttivi dei momenti di inerzia (attraverso dei valori dei moltiplicatori inerziali) per considerare la riduzione della rigidezza flessionale e di taglio, per effetto della fessurazione del conglomerato cementizio. Si è tenuto conto della reale rigidezza dei nodi, inserendo alle estremità degli elementi travi e pilastri conci rigidi. I numerosi disassamenti presenti nella progettazione architettonica, sono tutti attentamente analizzati e rappresentati nella modellizzazione.

Si riportano di seguito le considerazioni che sono intervenute nella modellazione strutturale dell'edificio:

- l'edificio è schematizzato attraverso un modello globale (tridimensionale 3D) agli elementi finiti, costituito da un assemblaggio di telai piani, orditi nelle due direzioni principali, in modo da rappresentare, in modo adeguato, la distribuzione di massa e rigidezza effettive;
- 2. Per comportamento strutturale **non dissipativo**, nella valutazione della domanda tutte le membrature e i collegamenti rimangono in campo elastico o sostanzialmente elastico; la domanda derivante dall'azione sismica e dalle altre azioni è calcolata, in funzione dello stato limite cui ci si riferisce, ma indipendentemente dalla tipologia strutturale e senza tener conto delle non linearità di materiale, attraverso un modello elastico (v. § 7.2.6);
- 3. Nel caso di comportamento strutturale non dissipativo, non vanno rispettate le prescrizioni sui dettagli costruttivi contenuti nel capitolo

- 7delle NTC2018, relativo alla progettazione in zona sismica, ovvero le limitazioni geometriche e di armatura per le travi, i pilastri, le pareti in cemento armato e per i nodi trave-pilastro. Andranno quindi rispettati solo i limiti sui dettagli costruttivi riportati nel capitolo 4 delle NTC2018;
- 4. nel caso di comportamento strutturale non dissipativo, la capacità delle membrature deve essere valutata in accordo con le regole di cui al § 4.1, senza nessun requisito aggiuntivo, a condizione che in nessuna sezione si superi il momento resistente massimo in campo sostanzialmente elastico, come definito al § 4.1.2.3.4.2. Per i nodi trave-pilastro di strutture a comportamento non dissipativo si devono applicare le regole di progetto relative alla CD "B" contenute nel § 7.4.4.3;
- 5. tutti i nodi saranno progettati secondo le regole relative alla CD"B" contenute nel paragrafo 7.4.4.3., in capacità con limitazione della domanda di resistenza al caso di comportamento strutturale non dissipativo. La procedura di verifica del nodo determinerà quindi la domanda di resistenza a taglio in capacità che verrà limitata superiormente alla domanda di resistenza a taglio per il caso di comportamento strutturale non dissipativo;


- gli orizzontamenti sono considerati rigidi, con i nodi slave della struttura vincolati allo spostamento del nodo master, coincidente con il baricentro delle masse di piano;
- sono applicati dei fattori di riduzione delle rigidezze, pari a 0,60 per le travi e 0,80 per pilastri, per tenere conto dell'effetto della fessurazione del calcestruzzo, riducendo la rigidezza flessionale e a taglio degli elementi in elevazione, come riportato al paragrafo 7.2.6 del D.M. 17-01-2018;
- 8. E' stata considerata l'irregolarità delle tamponature in pianta ponendo lo spostamento percentuale del centro di massa pari al 10% (paragrafo 7.2.3 del D.M. 17.01.2018);
 - (...) Se la distribuzione degli elementi non strutturali è fortemente irregolare in pianta, gli effetti di tale irregolarità debbono essere valutati e tenuti in conto. Questo requisito si intende soddisfatto qualora si incrementi di un fattore 2 l'eccentricità accidentale di cui al § 7.2.6.
- 9. la quota dello "0" sismico dell'edificio è alla quota di imposta della fondazione del piano -1;
- 10. la rigidezza e la resistenza degli elementi non strutturali, quali le tamponature perimetrali, vengono ignorate nell'analisi della risposta dell'edificio e sono considerate in termini di carichi e masse. In particolare, nella modellazione, le tamponature perimetrali ed interne di

- separazione delle unità immobiliari, sono considerate come carichi lineari uniformemente distribuiti agenti sulle travi;
- 11. nelle analisi e verifiche statiche, in combinazioni SLU e SLE, si trascura l'azione del vento, in quanto non significativa rispetto all'azione orizzontale dovuta al sisma;
- 12. gli sbalzi dei balconi non vengono modellati, ma considerati come carichi e masse;
- 13. le travi in c.a. degli impalcati dei livelli interrati sono schematizzate con altezze di 40 cm per il invece di 45 cm, non potendo garantire la collaborazione tra il getto in c.a. della trave e la lastra prefabbricata inferiore.

Si riporta di seguito il diagramma di flusso seguito per la progettazione delle strutture non dissipative in c.a.

OPZIONI DI DIMENSIONAMENTO DELLE

STRUTTURE NON DISSIPATIVE IN C.A.

Le figure di seguito riportate illustrano il modello tridimensionale adottato per un edificio.

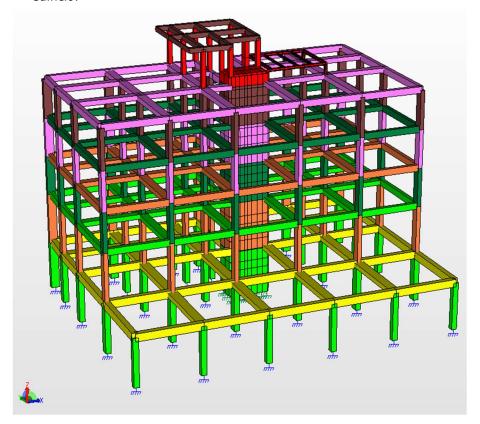


Figura 3 - 13.1: - modello fem edificio E1_C - vista S-O

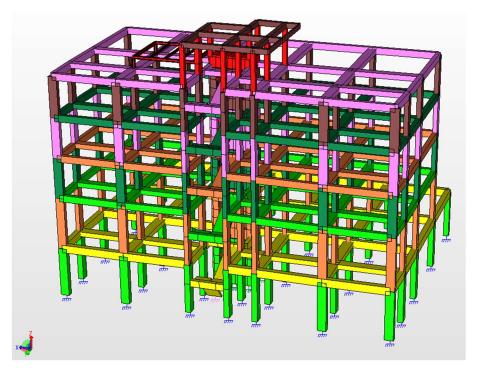


Figura 3 - 13.2: - modello fem edificio E1_C - vista N-O

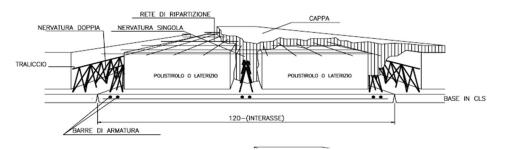
A.3 - 14. Verifiche statiche dei solai tipo predalles

Si riportano di seguito le verifiche statiche dei solai relative al livello di piano terra del fabbricato.

Le verifiche statiche vengono eseguite con il metodo agli stati limite, secondo l'attuale normativa (NTC2018), applicando, per le azioni di calcolo, la Combinazione Fondamentale per gli Stati Limite Ultimi (SLU), di cui al §2.5.3 delle NTC2018.

Le verifiche vengono eseguite per travetto di solaio.

Per la determinazione delle sollecitazioni massime di calcolo, viene adottato uno schema statico a trave semincastrata di luce pari alla distanza tra gli assi delle travi, soggetta ad un carico uniformemente distribuito, con interasse pari a quello dei travetti di solaio.


Le verifiche di sicurezza hanno riguardato verifiche di resistenza, a flessione ed a taglio.

Per luci superiori a 2,00 metri vengono inseriti dei travetti rompitratta, perpendicolari alla tessitura dei travetti, con base 25 cm (armati con 2 ø 16 superiori e 2 ø 16 inferiori) allo scopo di aumentare la rigidezza della struttura nel suo assieme, secondo lo schema seguente:

PRESCRIZIONI ROMPITRATTA SU SOLAIO								
TIPO PREDALLES								
Lunghezza solaio [m]	Rompitratta	Particolare rompitratta scala 1:50 25 staffe 06/20 L=128						
0 < L ≤ 2	nessun rompitratta	2016						
2 < L ≤ 4	1							
4 < L	2	2018						

A.3 - 14.1 Verifica solai a quota Q.R. -0,30 m

Il solaio di calpestio del piano interrato, a quota Q.R. -0.30 m, di spessore 45 cm, è costituito da una lastra inferiore prefabbricata di spessore 5 cm e soletta superiore gettata in opera di spessore 6 cm, con i blocchi di alleggerimento in polistirolo di 34 cm di altezza. La lastra ha larghezza di 120 cm e presenta 3 travetti. L'interasse dei travetti è quindi di 60 cm.

Le verifiche vengono differenziate in base all'ubicazione dei solai, distinguendo quelli delle zone interne dell'edificio in elevazione, delle esterne carrabili della piazza, in quanto soggetti a carichi diversi. Per il dettaglio dei carichi, si rimanda al paragrafo specifico della presente relazione relativo all'analisi dei carichi.

A.3 - 14.1.1. Solaio tipo A: interno edificio piastra tipo predalle h=45 cm

Per tale tipologia di solai, si prevede l'impiego di travetti di larghezza variabile, pari a 24 cm nelle zone degli appoggi, per un tratto di 100 cm, e travetti di larghezza 12 cm nella rimanente zona.

Il carico complessivo agente in condizioni SLU, agente su un travetto, comprensivo dei coefficienti parziali di sicurezza e pari a:

CODICE	CODICE		permanenti strutturali	permanenti non strutturali	Accidentali	Accidentali	Eccezionali
CARICO	LIVELLO	TIPO	G ₁	G ₂	Q_1	Q ₂	A_d
			[kN/m ²]	[kN/m ²]		[kN/m ²]	[kN/m ²]
C2	Piano terra	Solaio tipo A: interno edificio (negozi) - piastra tipo predalle h=5+34+6	5,60	4,30	4,00	0,00	

$$P = 1.3 \times 5.60 + 1.5 \times 4.30 + 1.5 \times 4.00 = 19.73 \text{ kN/m}^2$$

 $P = 19.73 \times 0.60 = 11.84 \text{ kN/m}$

I travetti in c.a. del solaio predalle sono schematizzati con altezze di 34+6=40 cm invece di 45 cm, non potendo garantire la collaborazione tra il getto in c.a. della trave e la lastra prefabbricata inferiore.

Armatura inferiore in campata: $2 \varphi 20$ / travetto Armatura inferiore agli appoggi: $2 \varphi 20$ / travetto Armatura superiore agli appoggi: $2 \varphi 20$ / travetto

Larghezza travetto in campata: 12 cm Larghezza travetto agli appoggi: 24 cm

Per i solai con luci minori, si adottano le medesime armature.

Calcolo sollecitazioni

Oggetto	Ecoquartiere Ponticelli		************************				
Codice carico	C2						
Livello	Piano terra						
Tipo	Solaio tipo A: interno edificio (ne					Revisione:	0
Vers. 1.00.00	C:\La	vori SAB\CNAP0	05 Napoli Pont	icelli\[E1C_PT_s	olaio A_Verifica se	olaio CA vers.	1.00.00.xlsm]sc
CARICHI PERM	ANENTI STRUTTURALI g _{k1} :	5,600	kN/m²				
	. NON STRUTTURALI g _{k2} :	4,300	kN/m²				
TOTALE CARIC	HI PERMANENTI:	9,90	kN/m²	Cat. Azione	Ψ0	<i>Ψ</i> 1	Ψ2
CARICO ACCIE	DENTALE q _{k1} :	4,00	kN/m²	D \blacksquare	0,70	0,70	0,60
CARICO ACCIE	DENTALE q _{k2} :	0,00	kN/m²	- ▼	0,00	0,00	0,00
0.4.D.T.O.O. N.E.Y.E.	No. 2 (2 (4 000 0 1)		1 2		Ψ0	Ψ1	Ψ2
CARICO NEVE			kN/m ² kN/m ²	<i>→</i>	0,50 0,60	0,20 0,20	0,00
CARTO VENTO	, 4k4·		KIV/III	,	0,00	0,20	0,00
CARICO CONC	ENTRATO P ₁ :	0,000	kN	distanza da	estremo	0,00	m
di cui qu	ota PERMANENTE STRUTTURALE:	0,000	kN	=	0,00 kN/m	х	0,00 m
di cui quota P	ERMANENTE NON STRUTTURALE:	0,000	kN	=	0,00 kN/m	X	0,00 m
	di cui quota ACCIDENTALE:	0,000	kN	=	0,00 kN/m	x	0,00 m
Carico orizzonta	ale H _k	0,000	kN/m				
Altezza di appli	cazione	0,000	m				
Lunghezza di in	fluenza	0,000	m				
Momento fletter		0,000	kN/m*m	distanza da	a estremo	0,00	m
CALCOLO CARI	CHI APPLICATI						
ZONA INFLUENT	ZA PERMANENTI STRUTTURALI	0,600	m				
	ZA ALTRI CARICHI	0,600	m				
CARICHI PERM	ANENTI STRUTTURALI g ₁ :	5,600	X	0,600	= [3,360	kN/m
PESO PROPRIO		5,000	^	0,000	_	0,000	kN/m
	. NON STRUTTURALI g ₂ :	4,300	X	0,600	=	2,580	kN/m
	E PERMANENTI:	.,		-,		5,940	kN/m
	i non strutturali:					0,000	kN/m
					Azione	Attiva	1
					principale	azione	Ψ0
CARICO ACCIE	DENTALE q ₁ :	4,00x0,60=	2,400	kN/m	•	~	
EARTED AFTER	1 N 1 2 1 1 2 2 2	13 (000) (0.5)(3	Continue	(ENJ) in	0		6,00
ELAREDESSI NO MI	Łą	\times $\Omega_{i}(x)$	13,130903	€N/ 1	0		9/30
EWER SO ALVE	l fig.	72. GR ₂ (,)	03,00003	SWF in	0		0,60
Luce di calcolo		6,650	[m]		Coeff. Com	binazione	
			1		SLE	SLU_1	SLU_2
Combinazione s	SLE rara			$\gamma_{g1} =$	1,00	1,30	1,30
				$\gamma_{g2} =$	1,00	1,50	1,50
				$\gamma_Q =$	1,00	1,50	1,50
		SL	E	SL	.U_1	SL	U_2
CARICHI DIST	RIBUITI	Ψ*γsle	q [kN/m]	Ψ*γςιυ	q [kN/m]	ψ*γsιυ	q [kN/m
CARICHI PERM	ANENTI STRUTTURALI g ₁ :	1,00	3,36	1,30	4,37	1,30	4,37
CARICHI PERM	. NON STRUTTURALI g ₂ :	1,00	2,58	1,50	3,87	1,50	3,87
CARICO ACCIE	DENTALE q ₁ :	1,00	2,40	1,50	3,60	1,50	3,60
EARNO ARCH	U NTALE 459	(3, (30)	Chicken	18,0803	(3,003	CF, CSCR	0,00
COMPUTER OF WEIGHT	19	(Oly's Ol	0,00	0,75	13,1303	W ₁ 7"3:	0,00

Carico Totale lineare

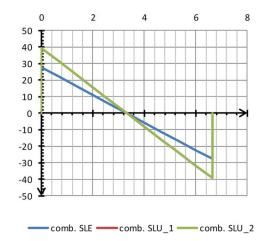
8,34

11,84

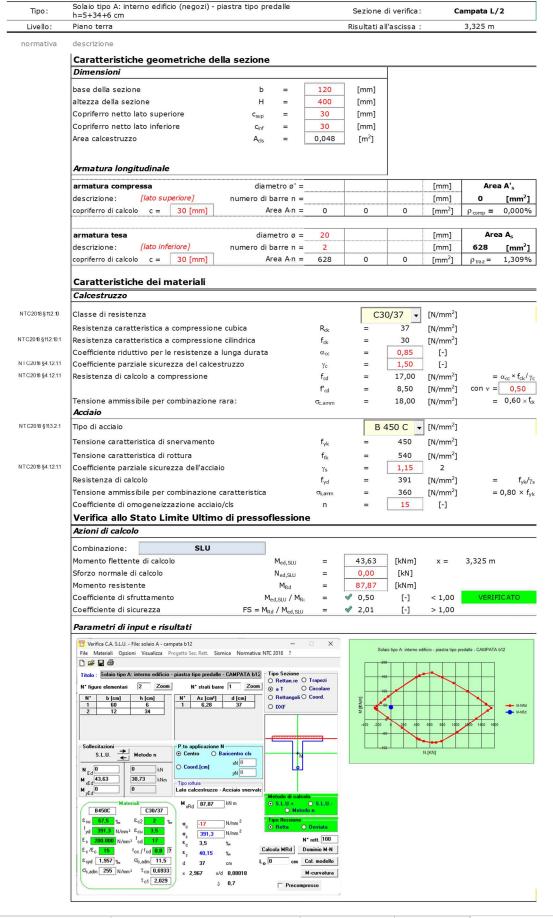
11,84

CALCOLO SOLLECITAZIONI

MOMENTO FLETTENTE								
Descrizione	ASCISSA	COND. DI CARICO						
	x [m]	SLE	SLE SLU_1					
Asse trave	0,000	-15,37 kNm	-21,81 kNm	-21,81 kNm				
Campata L/2	3,325	30,73 kNm	43,63 kNm	43,63 kNm				
Filo appoggio - trav. 24 cm	0,225	-9,34 kNm	-13,26 kNm	-13,26 kNm				
zona travetti 12 cm	1,225	12,34 kNm	17,52 kNm	17,52 kNm				
zona travetti 12 cm	2,225	25,69 kNm	36,46 kNm	36,46 kNm				


TAGLIO	х	=	0,00	m			
COND. DI CA	RICO	S	SLE	SI	LU_1	SL	.U_2
CARICHI PERMANENTI		19,75	kN	27,39	kN	27,39	kN
CARICHI ACCIDENTALI		7,98	kN	11,97	kN	11,97	kN
	CARICHI TOTALI	27,73	kN	39,36	kN	39,36	kN
Risultati all'ascissa x(m) =	0,225	25,85	kN	36,70	kN	36,70	kN
Risultati all'ascissa x(m) =	1,225	17,51	kN	24,86	kN	24,86	kN
Risultati all'ascissa x(m) =	2,225	9,17	kN	13,02	kN	13,02	kN
Risultati all'ascissa $x(m) =$	3,325	0,00	kN	0,00	kN	0,00	kN

CALCOLO FRECCIA AMMISSI	BILE ALLO SLE		schema statico:		trave semi-incastrata agli estremi			
✓ Freccia calcolata			SI					
MODULO ELASTICO MATERI	ALE E:		32.837	N/mm ²	***************************************	f =	3	q L ⁴
MOMENTO D'INERZIA J _y :			87.637	cm⁴	*******	1 -	384	EJ
Freccia ammissibile CARICO	ACCIDENTALE		L/300	=	22,17 mm	q =	8,34	kN/m
Freccia ammissibile CARICO	TOTALE		L/250	=	26,60 mm	L =	6,65	m
Controfreccia iniziale	f _c		0,00	mm				
Freccia carico accidentale	f _{acc}	0	1,27	mm	<	22,17	mm	Verificato
Freccia carico totale	f _{tot}	0	4,43	mm	<	26,60	mm	Verificato
Freccia totale netta	$f_{max} = f_{tot} - f_{c}$	0	4,43	mm	<	26,60	mm	Verificato


DIAGRAMMA MOMENTO FLETTENTE

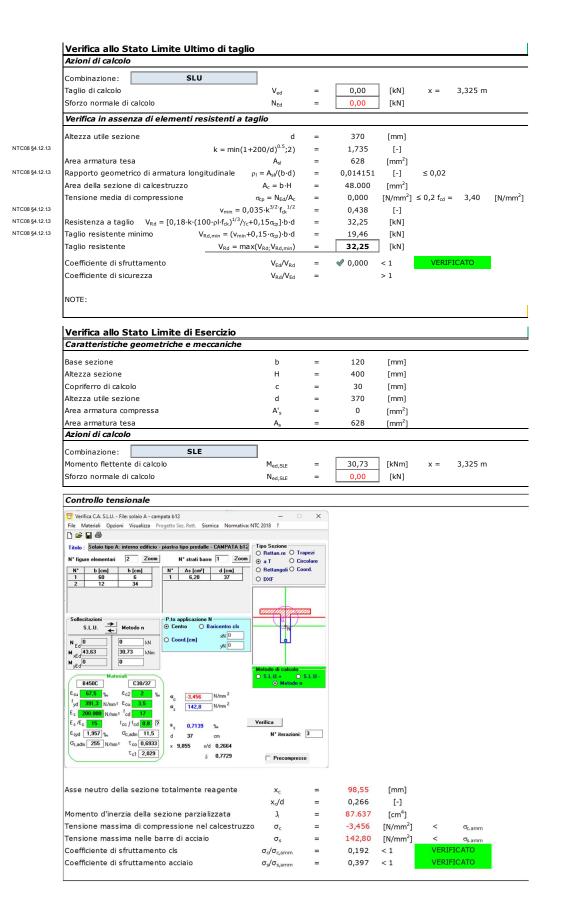
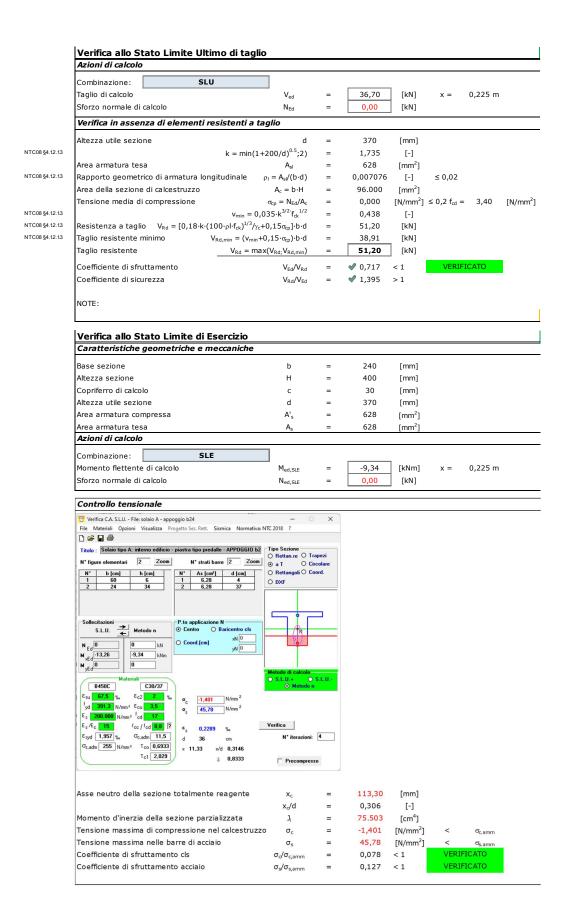
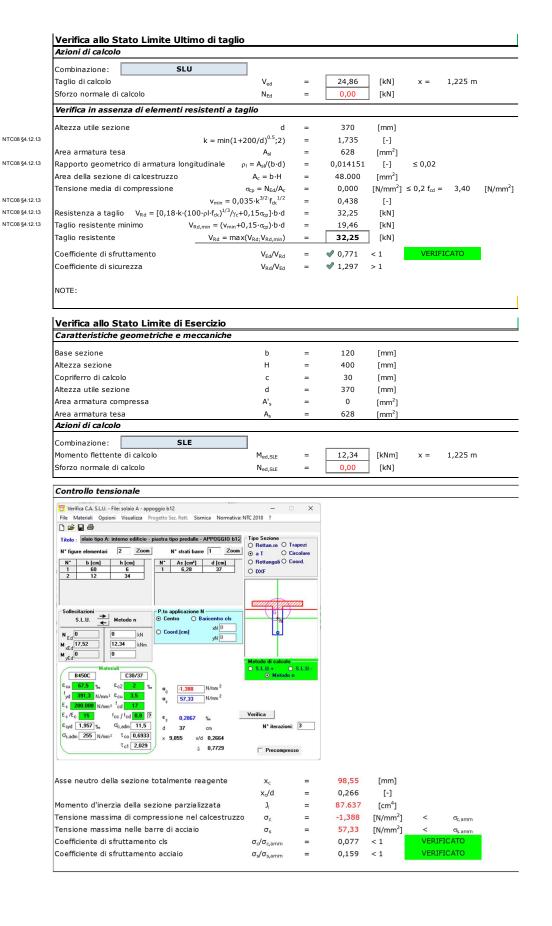

-30,00 -20,00 -10,00 -10,00 20,00 30,00 40,00 50,00 -comb. SLE comb. SLU_1 comb. SLU_2

DIAGRAMMA TAGLIO



Verifiche a flessione e taglio



Tipo:	Solaio tipo A: interno edificio (negozi) - piastra tipo predalle h=5+34+6 cm		Sezione di verifica:	Filo appoggio - trav. 24 cm
Livello:	Piano terra		Risultati all'ascissa :	0,225 m
normativa	descrizione			
	Caratteristiche geometriche della sezione			
	Dimensioni			
	base della sezione b =	240	[mm]	
	b = altezza della sezione b = H =	400	[mm] [mm]	
	Copriferro netto lato superiore $c_{sup} =$	30	[mm]	
	Copriferro netto lato inferiore $c_{inf} =$	30	[mm]	
	Area calcestruzzo A _{cls} =	0,096	[m ²]	
	Armatura longitudinale			
	armatura compressa diametro ø' =	= 20		[mm] Area A's
	descrizione: [lato inferiore] numero di barre n			[mm] 628 [mm²]
	copriferro di calcolo c = 30 [mm] Area A·n =	= 628	0 0	$[mm^2]$ $\rho_{comp} = 0,654\%$
	armatura tesa diametro ø =			[mm] Area A _s
	descrizione: [lato superiore] numero di barre n = copriferro di calcolo c = 30 [mm] Area A·n =		0 0	[mm] 628 [mm ²] $\rho_{traz} = 0.654\%$
	Copyrights of Calcolo C = 30 [IIIII] Area Artis	028	0 0	[mm ²] $\rho_{\text{tra}z} = 0,654\%$
	Caratteristiche dei materiali			
	Calcestruzzo			
NTC2018 § 112.10	Classe di resistenza		C30/37 -	[N/mm ²]
	Resistenza caratteristica a compressione cubica	R _{ck}	= 37	[N/mm ²]
NTC2018 §112.10.1	Resistenza caratteristica a compressione cilindrica	f _{dk}	= 30	[N/mm ²]
	Coefficiente riduttivo per le resistenze a lunga durata	α_{cc}	= 0,85	[-]
NTC2018 §4.12.11	Coefficiente parziale sicurezza del calcestruzzo	γс	= 1,50	[-]
NTC2018 §4.12.11	Resistenza di calcolo a compressione	f _{cd}	= 17,00	$[N/mm^2] = \alpha_{cc} \times f_{ck}/\gamma_c$
	Tanciana ammisaibila nar sambinazione rara	f' _{cd}	= 8,50 = 18.00	$[N/mm^2]$ con $v = 0,50$ $[N/mm^2]$ = 0,60 × f_{ck}
	Tensione ammissibile per combinazione rara: Acciaio	O _{C-amm}	= 18,00	$[N/mm^2] = 0,60 \times t_{ck}$
NTC2018 §11.3.2.1	Tipo di acciaio		B 450 C ▼	[N/mm ²]
	Tensione caratteristica di snervamento	f_{yk}	= 450	[N/mm ²]
	Tensione caratteristica di rottura	f _{tk}	= 540	[N/mm ²]
NTC2018 §4.12.1.1	Coefficiente parziale sicurezza dell'acciaio	γs	= 1,15	2
	Resistenza di calcolo	f_{yd}	= 391	$[N/mm^2]$ = f_{yk}/γ_s
	Tensione ammissibile per combinazione caratteristica	$\sigma_{s,amm}$	= 360	$[N/mm^2] = 0.80 \times f_{yk}$
	Coefficiente di omogeneizzazione acciaio/cls	n	= 15	[-]
	Verifica allo Stato Limite Ultimo di pressoflessione Azioni di calcolo	ne		
	Combinazione: SLU			
	Momento flettente di calcolo M _{ed,SLU} Sforzo normale di calcolo N _{ed,SLU}	=	-13,26 [kNm] 0,00 [kN]	x = 0,225 m
	Sforzo normale di calcolo $N_{ed,SLU}$ Momento resistente M_{Rd}	=	-82,65 [kNm]	
	Coefficiente di sfruttamento M _{ed,SLU} / M		√ 0,16 [-]	< 1,00 VERIFICATO
	Coefficiente di sicurezza $FS = M_{Rd} / M_{ed,SU}$		√ 6,23 [-]	> 1,00
	Parametri di input e risultati			
	▼ Verifica C.A. S.L.U File: solaio A - appoggio b24	□ x		
	File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2018 ?		Solaio tipo A: interno edifi	icio - piastra tipo predalle - APPOGGIO b24
	Titolo · Solaio tipo A; interno edificio · piastra tipo predalle · APPOGGIO b2 Tipo Sezione —		260	
	O Rettan.re	O Trapezi O Circolare	160	
	N* b [cm] h [cm] N* As [cm²] d [cm] O Rettangoli		KNm)	
	1 60 6 1 6.28 4 0 DXF		\$ 500	1000 1500 000 2500 M-NEd
			-100	
			-160	
	S.L.U. Metodo n P.to applicazione N © Centro © Baricentro cls		200	ı [KN]
	N Ed (WA.	l.	
	M xEd -13,26 -9,34 kNm Tino rothus			
	M yEd 0 0 Lato calcestruzzo - Acciaio snervatc			
	Materiali M xRd -82,85 kN m S.L.U.+ Meto			
	E _{SU} 67.5 % E _C 2 2 % σ _C -17 N/mm ² • Retta) Deviata		
	σ _s 391,3 N/mm ²	N* rett. 100		
	E _s /E _c 15 f _{cc} / f _{cd} 0.8 ? E _s 27.76 % Calcola MRd	Dominio M-N		
	ε _{syd} 1,957 ‰ σ _{c,adm} 11,5 d 36 cm L ₀ 0 cm	Col. modello		
	G _{0,adm} 255 N/mm² C _{co} 0.6933 × 4.03 ×/d 0.112 C _{c1} 2.029 5 0.7 Precom	M-curvatura		
	§ U,7 Precom	higzo		1

Livello:	Solaio tipo A: interno edificio (negozi) - pia h=5+34+6 cm	astra tipo predalle		Sezione d	di verifica:	zona	travetti 1	2 cm
	Piano terra			Risultati all	l'ascissa :		1,225 m	
normativa	descrizione							
	Caratteristiche geometriche dell	la sezione						
	Dimensioni							
	base della sezione	b = [120	[mm]				
	altezza della sezione	В = Н =	120 400	[mm] [mm]				
	Copriferro netto lato superiore	c _{sup} =	30	[mm]				
	Copriferro netto lato inferiore	G _{nf} =	30	[mm]				
	Area calcestruzzo	A _{cls} =	0,048	[m ²]				
			-					
	Armatura longitudinale							
	armatura compressa	dia metro ø' =				[mm]	Are	a A's
	descrizione: [lato superiore]	numero di barre n =				[mm]	0	[mm ²]
	copriferro di calcolo c = 30 [mm]	Area A·n =	0	0	0	[mm ²]	ρ_{comp} =	0,000%
		1	20					_
	descrizione: [lato inferiore]	diametro ø = numero di barre n =	20			[mm]		a A _s
	copriferro di calcolo c = 30 [mm]	Area A·n =	628	0	0	[mm] [mm²]	628 ρ _{traz} =	[mm²] 1,309%
		7.50 7.11 =	525			[11IIII]	r traz −	1,5057
	Caratteristiche dei materiali							
	Calcestruzzo							
TC2018 § 11.2.10	Classe di resistenza		-	J.	0/37 🔻	[N/mm ²]		
C2049 6446 40 4	Resistenza caratteristica a compressione		R _{ck}	=	37	[N/mm ²]		
C2018 §112.10.1	Resistenza caratteristica a compressione		f _{dk}	=	30	[N/mm ²]		
C2018 §4.12.11	Coefficiente narriale sigurarra del selecet	-	α_{cc}	=	0,85	[-]		
TC2018 §4.12.11	Coefficiente parziale sicurezza del calcest Resistenza di calcolo a compressione	14220	γ _c f _{cd}	=	1,50 17,00	[-] [N/mm ²]	_	$\alpha_{cc} \times f_{ck}$
	nesistenza di carcolo a compressione		f'cd	=	8,50	[N/mm ²]		0,50
	Tensione ammissibile per combinazione ra	ara:	σ _{c.amm}	=	18,00	[N/mm ²]		0,60 ×
TC2018 §11.3.2.1	Tipo di acciaio			B 4	150 C ▼	[N/mm ²]		
	Tensione caratteristica di snervamento		f_{vk}	=	450	[N/mm ²]		
	Tensione caratteristica di rottura			=	540			
TC2018 §4.12.11	Coefficiente parziale sicurezza dell'acciaio		f _{tk}	=	1,15	[N/mm ²]		
	Resistenza di calcolo		γs f _{vd}	=	391	[N/mm ²]	=	f _{vk} /
	Tensione ammissibile per combinazione ca	aratteristica	os,amm	=	360	[N/mm ²]		0,80 × f
	Coefficiente di omogeneizzazione acciaio/		n	=	15	[-]		
						7=3(=)		
	Verifica allo Stato Limite Ultimo		•					
	Verifica allo Stato Limite Ultimo		1					
	Verifica allo Stato Limite Ultimo Azioni di calcolo	di pressoflessione	=	17,52	[kNm]	x =	1,225 m	
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU			17,52 0,00	[kNm]	x =	1,225 m	
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo	di pressoflessione	=		150	x =	1,225 m	
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo	di pressoflessione	= =	0,00	[kN]	x = < 1,00		ICATO
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente	di pressoflessione Med,SLU Ned,SLU MRd	= = =	0,00 87,87	[kN] [kNm]			ICATO
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento	Med, SLU MRd Med, SLU MRd Med, SLU MRd Med, SLU / MRd	= = = =	0,00 87,87 ♂ 0,20	[kN] [kNm] [-]	< 1,00		ICATO
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica C.A. S.L.U File: solaio A - appoggio b12 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismi	Med,SLU Ned,SLU Ned,SLU MRd Ned,SLU / MRc	= = = =	0,00 87,87 ✔ 0,20 ✔ 5,01	[kN] [kNm] [-] [-]	< 1,00 > 1,00		
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati I Verifica C.A. S.L.U File: Solaio A - appoggio b12 File: Materiali Opzioni Visualizza Progetto Sez. Rett. Sismi	di pressoflessione $\begin{array}{c} M_{ed,SLU} \\ N_{ed,SLU} \\ M_{Rd} \\ M_{ed,SLU} / M_{Rc} \\ FS = M_{Rd} / M_{ed,SLU} \\ \end{array}$	= = =	0,00 87,87 ✔ 0,20 ✔ 5,01	[kN] [kNm] [-] [-]	< 1,00 > 1,00	VERIF	***************************************
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati I Verifica C.A. S.L.U File: solaio A - appoggio b12 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismi Dialo i daio tipo A: interno edificio - piastra tipo predalle - A	Med,SLU Ned,SLU Med Med,SLU / MRd Med,SLU / MRd TFS = MRd / Med,SLU Tipo Sezione O Rettan.e O Rettan.e	= = = = = X	0,00 87,87 ✔ 0,20 ✔ 5,01	[kN] [kNm] [-] [-]	< 1,00 > 1,00	VERIF	***************************************
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica C.A. S.L.U File: solaio A - appoggio b12 File: Materiali Opzioni Visualizza Progetto Sez. Rett. Sismi Dialo Golaio tipo A: interno edificio - piastra tipo predalle - A N' figure elementari 2 Zoom N' strati barre	Med,SLU	= = = = X	0,00 87,87 ✔ 0,20 ✔ 5,01	[kN] [kNm] [-] [-]	< 1,00 > 1,00	VERIF	***************************************
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica C.A. S.L.U File: solaio A - appoggio b12 File Material Opzioni Visualizza Progetto Sez. Rett. Sismi Di G. S. Titolo: olaio tipo A: interno edificio - piastra tipo predalle - A N' figure elementari 2 Zoom N' strati barre	Med,SLU Med,SLU Med,SLU MRd Med,SLU / MRr FS = MRd / Med,SLU ca Normativa: NTC 2018 ? Tipo Sezione O Rettan.re O O a T O a T	= = = = X	0,00 87,87 ✔ 0,20 ✔ 5,01	[kN] [kNm] [-] [-]	< 1,00 > 1,00	VERIF	
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica C.A. S.L.U File: solaio A - appoggio b12 File Material Opzioni Visualizza Progetto Sez. Rett. Sismi Dia Simitati Opzioni Visualizza Progetto Sez. Rett. Sismi Titolo: olaio tipo A: interno edificio - piastra tipo predalle - A N' figure elementari 2 Zoom N' strati barre N' b [cm] h [cm] 1 6.0 6 1 1 6.28	Med, SLU	= = = = X	0,00 87,87 0,20 5,01	[kN] [kNm] [-] [-]	< 1,00 > 1,00	VERIF	b12
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica C.A. S.L.U File: solaio A - appoggio b12 File Material Opzioni Visualizza Progetto Sez. Rett. Sismi Dia Simitati Opzioni Visualizza Progetto Sez. Rett. Sismi Titolo: olaio tipo A: interno edificio - piastra tipo predalle - A N' figure elementari 2 Zoom N' strati barre N' b [cm] h [cm] 1 6.0 6 1 1 6.28	Med, SLU	= = = = X	0,00 87,87 0,20 5,01	[kN] [kNm] [-] [-]	< 1,00 > 1,00	VERIF	b12
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica C.A. S.L.U File: solaio A - appoggio b12 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismi Titolo: olaio tipo A: interno edificio: piastra tipo predalle - A N' figure elementari 2 Zoom N' stati bare N' b [cm] h [cm] N' b [cm] h [cm] 1 6.20 Sollicitazioni P.to applicazione N	Med,SLU Ned,SLU MRd Med,SLU MRd Med,SLU MRd Med,SLU MRd Med,SLU Tipo Sectione Rettangoli O DXF O D	= = = = X	0,00 87,87 0,20 5,01	[kN] [kNm] [-] [-] tipo A: interno addi	< 1,00 > 1,00	VERIF	b12
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati □ Verifica CA S.L.U File solaio A - appoggio b12 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismi □ ☑ ☑ ☑ Tatol: Joint Upo A: interno edificio - piastra tipo predalle - A N' figure elementari 2 Zoom N' strati barre N' b [cm] h [cm] N' As [cm²] 1 6.28 Sollecitazioni 34 Sollecitazioni Opzioni Metodo n S.L.U. ← Metodo n	Med, SLU	= = = = X	0,00 87,87 0,20 5,01	[kN] [kNm] [-] [-] tipo A: interno addi	< 1,00 > 1,00	VERIF	b12
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati □ Verifica C.A. S.L.U File: solaio A - appoggio b12 File Matériali Opzioni Visualizza Progetto Sez. Rett. Sismi Tatolo: olaio tipo A: interno edificio - piastra tipo predalle - A N' figure elementari 2 Zoom N' stoti barre N' b [cm] h [cm] N' As [cm²] 1 6.28 Sollecitazioni S.L.U Metodo n P.to applicazione N S.L.U Metodo n N Centro O Baro Coord.[cm] Coord.[cm]	Med, SLU Ned, SLU MRd Med, SLU / MRd	= = = = X	0,00 87,87 0,20 5,01	[kN] [kNm] [-] [-] tipo A: interno addi	< 1,00 > 1,00	VERIF	b12
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Tele Materiali Opzioni Visualizza Progetto Sez. Rett. Sismi Tatolo: olaio tipo A: interno edificio piastra tipo predalle - A N' figure elementari 2 Zoom N' strati barre N' b [cm] h [cm] N' Az [cm'] Sollecitazioni SLU. Metodo n P.to applicazione N Scalicoli Sum N Scalicoli Sum Sum	Med,SLU Ned,SLU Med Med,SLU / MRed Med,SLU / MRed FS = MRed / Med,SLU Tipo Sezione Q Rettan.re Q a T Q O NXF Nicentro els Ni (0) Ni	= = = = X	0,00 87,87 0,20 5,01	[kN] [kNm] [-] [-] tipo A: interno addi	< 1,00 > 1,00	VERIF	b12
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica C.A. S.L.U File solaio A - appeggio b12 File Materiali Optioni Visualizza Progetto Sez. Rett. Sismi Tatolo: Jolaio tipo A: interno edficio: piastra tipo predalle - A N' figure elementari Z Zoom N' strati barre N' b [cm] h [cm] N' As [cm] 1 6:00 6:00 1 6:28 S.L.U. Metodo n N Ed 0 0 kN M Ed 0 0 0 kN M Ed 0 0 0 kN M Ed 0	Med,SLU Ned,SLU Med Med,SLU Med Med,SLU Med Med,SLU Med Tripo Sezione Ca Normativa: NTC 2018 ? Tripo Sezione O Rettan.e O a T O Rettan.e O Normativa: NTC 2018 ? Rettan.e O Normativa: NTC 2018 ? Rettan.e O Normativa: NTC 2018 ?	= = = = = = = = = = = = = = = = = = =	0,00 87,87 0,20 5,01	[kN] [kNm] [-] [-] tipo A: interno addi	< 1,00 > 1,00	VERIF	b12
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati I verifica C.A. S.L.U File: solaio A - appoggio b12 File: Materiali Opzioni Visualizza Progetto Sez. Rett. Sismi Titolo: olaio tipo A: interno edificio: piastra tipo predalle - A N' figure elementari 2 Zoom N' stati bare N' bicm h [cm] N' bicm h [cm] Scullecitazioni S.L.U. ← Metodo n N as [cm²] 1 6.28 Sollecitazioni S.L.U. ← Metodo n N as [cm²] 1 6.20 Coord. [cm] N del Ti.5.2	Med,SLU Ned,SLU MRd Med,SLU DPP066I0 b12 Tipo Sezione Rettan.e O a 1 O DXF DXF Mediodi cicalcos NM	= = = = = = = = = = = = = = = = = = =	0,00 87,87 0,20 5,01	[kN] [kNm] [-] [-] tipo A: interno addi	< 1,00 > 1,00	VERIF	b12
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica C.A. S.L.U File: solaio A - appoggio b12 File: Materiali Opzioni Visualizza Progetto Sez. Rett. Sismi Titolo: olaio tipo A: interno edificio - piastra tipo predalle - A N' figure elementari 2 Zoom N' stati bare N' bicm h [cm] N' As [cm²] 1 6.28 Sollecitazioni S.L.U. ← Metodo n N de di 1.5.29 Sollecitazioni S.L.U. ← Metodo n N de di 1.5.29 Materiali MyEd (17.52) MyEd (17.5	Med, SLU Ned, SLU Ned, SLU MRd Med, SLU MRd	= = = = = = = = = = = = = = = = = = =	0,00 87,87 0,20 5,01	[kN] [kNm] [-] [-] tipo A: interno addi	< 1,00 > 1,00	VERIF	b12
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Telefica C.A. S.L.U File: solaio A - appoggio b12 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismi Tatolo: Jolaio tipo A: interno edificio - piastra tipo predalle - N' figure elementari Z Zoom N' stroti barre N' b [cm] h [cm] h [cm] 1 6,28 Sollecitazioni 2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Med, SLU	= = = = = = = = = = = = = = = = = = =	0,00 87,87 0,20 5,01	[kN] [kNm] [-] [-] tipo A: interno addi	< 1,00 > 1,00	VERIF	b12
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica C.A. S.L.U File: solaio A - appoggio b12 File Matériali Opzioni Visualizza Progetto Sez. Rett. Sismi Tatolo: olaio tipo A: interno edificio - piastra tipo predalle - A N' figure elementari 2 Zoom N' stoti barre N' b Cm b Cm 1 6.28 Sollecitazioni S.L.U. Metodo n N E Diano D	Med, SLU Ned, SLU Ned, SLU MRd Med, SLU MRd MRd Med, SLU MRd MRd MRd Med, SLU MRd MRd MRd MRd Med, SLU MRd	= = = = = = = = = = = = = = = = = = =	0,00 87,87 0,20 5,01	[kN] [kNm] [-] [-] tipo A: interno addi	< 1,00 > 1,00	VERIF	b12
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Tele Materiali Opzioni Visualizza Progetto Sez. Rett. Sismi Tatolo: olaio tipo A: interno edficio - piastra tipo predalle - A N' figure elementari 2 Zoom N' strati barre N' b [cm] h [cm] N' Az [cm²] 1 6.28 Sollecitazioni S.L.U. Metodo n P.to applicazione N N G.Z. D D D D D D D D D	Med, SLU Med, SLU MRd MRd	= = = = = = = = = = = = = = = = = = =	0,00 87,87 0,20 5,01	[kN] [kNm] [-] [-] tipo A: interno addi	< 1,00 > 1,00	VERIF	b12
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Telefica (A. S.L.U File: solaio A - appoggio b12 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismi Titolo: Iolaio tipo A: interno edificio - piastra tipo predalle - A N' figure elementari 2 Zoom N' stati bizne N' b [cm] h [cm] 1 6,28 Scollecitazioni 2 3,34 Scollecitazioni 1 6,28 Scollecitazioni 1	Med, SLU Med, SLU MRd MRd	= = = = = = = = = = = = = = = = = = =	0,00 87,87 0,20 5,01	[kN] [kNm] [-] [-] tipo A: interno addi	< 1,00 > 1,00	VERIF	b12

A.3 - 14.1.2. Solaio tipo B: esterno edificio - piastra tipo predalle h=45 cm

Per tale tipologia di solai, si prevede l'impiego di una zona piena di 100 cm alle estremità e travetti di larghezza variabile, pari a 24 cm nelle zone degli appoggi, per un tratto di 100 cm, e travetti di larghezza 12 cm nella rimanente zona.

Il carico complessivo agente in condizioni SLU, agente su un travetto, comprensivo dei coefficienti parziali di sicurezza e pari a:

CODICE CARICO	LIVELLO	TIPO	permanenti strutturali G ₁ [kN/m ²]	permanenti non strutturali G_2 $[kN/m^2]$	Accidentali Q ₁	Accidentali Q ₂ [kN/m ²]	Eccezionali A _d [kN/m²]
С3	Piano terra	Solaio tipo B: esterno edificio - piastra tipo predalle h=5+34+6 cm	5,60	6,10	5,00	14,00	

$$P = 1.3 \times 5.60 + 1.5 \times 6.10 + 1.5 \times 5.00 = 23.93 \text{ kN/m}^2$$

$$p = 23,93 \times 0,60 = 14,36 \text{ kN/m}$$

Considerando il carico Q2 come azione principale si ha invece:

$$P = 1.3 \times 5.60 + 1.5 \times 6.10 + 1.5 \times 14.00 = 37.43 \text{ kN/m}^2$$

$$p = 37,43 \times 0,60 = 22,46 \text{ kN/m}$$

I travetti in c.a. del solaio predalle sono schematizzati con altezze di 34+6=40 cm invece di 45 cm, non potendo garantire la collaborazione tra il getto in c.a. della trave e la lastra prefabbricata inferiore.

Armatura inferiore in campata: $2 \varphi 20$ / travetto Armatura inferiore agli appoggi: $2 \varphi 20$ / travetto Armatura superiore agli appoggi: $2 \varphi 20$ / travetto

Larghezza travetto in campata: 12 cm

Larghezza travetto agli appoggi (dopo zona piena): 24 cm

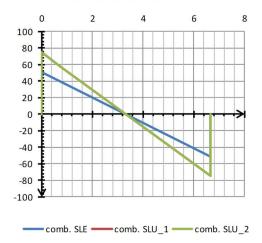
Oggotto	coguartiere Benticelli						
Oggetto E	coquartiere Ponticelli						
	ano terra						
	olaio tipo B: esterno edificio -	niactra tino ne	odallo b = F	1.24.16.cm		Revisione:	0
Tipo S		vori SAB\CNAP0					
CARICHI PERMANI	ENTI STRUTTURALI g _{k1} :	5,600	kN/m²				
CARICHI PERM. NO	ON STRUTTURALI g _{k2} :	6,100	kN/m ²	1			
TOTALE CARICHI	PERMANENTI:	11,70	kN/m ²	Cat. Azione	Ψ0	Ψ1	Ψ2
CARICO ACCIDEN	ITALE q _{k1} :	5,00	kN/m²	c 🔻	0,70	0,70	0,60
CARICO ACCIDEN	ITALE q _{k2} :	14,00	kN/m ²	G ▼	0,70	0,50	0,30
				1			
CARICO NEVE « .	Nava (a. < 1000 m)		1.81/2		Ψ0	Ψ1	Ψ2
CARICO NEVE q_{k3} : Neve $(q. \le 1000 \text{ m})$			kN/m ²	<i>→</i>	0,50	0,20	0,00
CARICO VENTO q _k	4.		kN/m²	\rightarrow	0,60	0,20	0,00
CARICO CONCENT	ΓRATO P ₁ :	0,000	kN	distanza da	a estremo	0,00	m
di cui quota	0,000	kN	=	0,00 kN/m	х	0,00 n	
di cui quota PER	MANENTE NON STRUTTURALE:	0,000	kN	=	0,00 kN/m	X	0,00 n
	di cui quota ACCIDENTALE:	0,000	kN	=	0,00 kN/m	x	0,00 n
Carico orizzontale	н.	0,000	kN/m				
Altezza di applicaz		0,000	m				
Lunghezza di influ		0,000	m				
Momento flettente		0,000		distanza da	estremo	0,00	m
		7,000		anotaniza at		5/55	
CALCOLO CARICHI	I APPLICATI						
ZONA INFLUENZA	PERMANENTI STRUTTURALI	0,600	m				
ZONA INFLUENZA	ALTRI CARICHI	0,600	m				
CARICHI PERMANI	ENTI STRUTTURALI g₁:	5,600	×	0,600	= [3,360	kN/m
PESO PROPRIO TR						0,000	kN/m
	ON STRUTTURALI g ₂ :	6,100	X	0,600	=	3,660	kN/m
CARICO TOTALE P						7,020	kN/m
Altri permanenti n						0,000	kN/m
							1
					Azione principale	Attiva azione	Ψ0
CARICO ACCIDEN	ITALE q ₁ :	5,00x0,60=	3,000	kN/m	0		(),(n)
CARICO ACCIDEN	ITALE q ₂ :	14,00x0,60=	8,400	kN/m	•	~	
ENERGE NO VI	δq	20 08 _x (x.)	13,180903	≅N∱ ⊓	0		ay Un
S SWIFTS SOUTH WITH	1 m	72. 03.75.1	Cr. Lit his	Strift in	0		0,50
Luce di calcolo		6,650	[m]		Coeff. Com	binazione	
					SLE	SLU_1	SLU_2
Combinazione SLE	rara			$\gamma_{g1} =$	1,00	1,30	1,30
				$\gamma_{g2} =$	1,00	1,50	1,50
				$\gamma_Q =$	1,00	1,50	1,50
		SL		SL	.U_1	SL	U_2
CARICHI DISTRII	BUITI	Ψ*γsle	q [kN/m]	Ψ*γςιυ	q [kN/m]	Ψ*γςιυ	q [kN/m
	ENTI STRUTTURALI g ₁ :	1,00	3,36	1,30	4,37	1,30	4,37
	ON STRUTTURALI g ₂ :	1,00	3,66	1,50	5,49	1,50	5,49
CARDOLACIO N	GATES,	0,00	0,00	0,00	0,00	0,00	0,00
CARICO ACCIDEN	ITALE q ₂ :	1,00	8,40	1,50	12,60	1,50	12,60
EMERCES WIVING		(0)/500	0/,003	0,7%	(3,1303	0,75	0,00

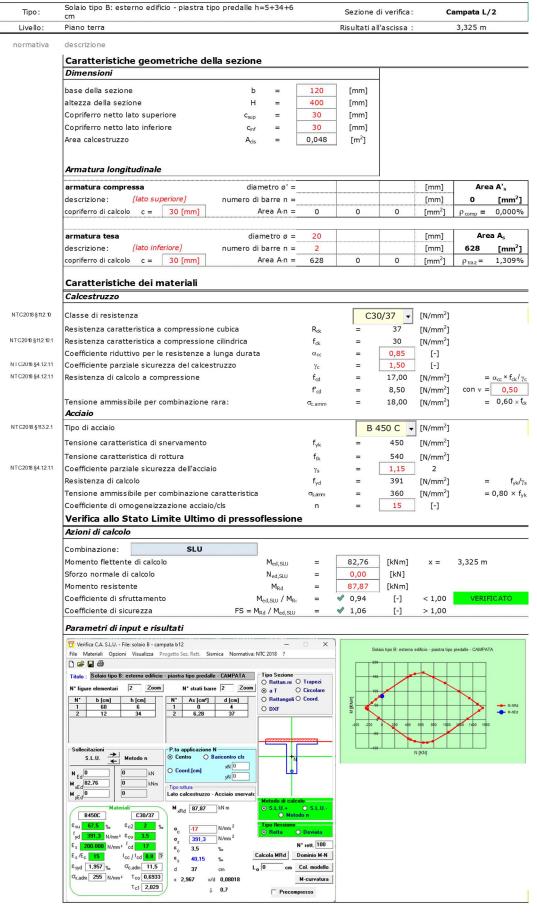
Carico Totale lineare

22,46

15,42

Grado di vincolo 0,50 → 0 = trave doppio appoggio; 1 = trave doppio incastro


MOMENTO FLETTENTE								
Descrizione	ASCISSA		COND. DI CARICO					
	x [m]	SLE	SLU_1	SLU_2				
Asse trave	0,000	-28,41 kNm	-41,38 kNm	-41,38 kNm				
Campata L/2	3,325	56,83 kNm	82,76 kNm	82,76 kNm				
Filo appoggio	0,225	-17,27 kNm	-25,15 kNm	-25,15 kNm				
zona travetti 24 cm	1,225	22,82 kNm	33,24 kNm	33,24 kNm				
zona travetti 12 cm	2,225	47,50 kNm	69,18 kNm	69,18 kNm				


TAGLIO	х	=	0,00	m			
COND. DI CA	RICO	9	SLE	SI	_U_1	SL	.U_2
CARICHI PERMANENTI		23,34	kN	32,78	kN	32,78	kN
CARICHI ACCIDENTALI		27,93	kN	41,90	kN	41,90	kN
	CARICHI TOTALI	51,27	kN	74,67	kN	74,67	kN
Risultati all'ascissa x(m) =	0,225	47,80	kN	69,62	kN	69,62	kN
Risultati all'ascissa x(m) =	1,225	32,38	kN	47,16	kN	47,16	kN
Risultati all'ascissa x(m) =	2,225	16,96	kN	24,70	kN	24,70	kN
Risultati all'ascissa x(m) =	3,325	0,00	kN	0,00	kN	0,00	kN

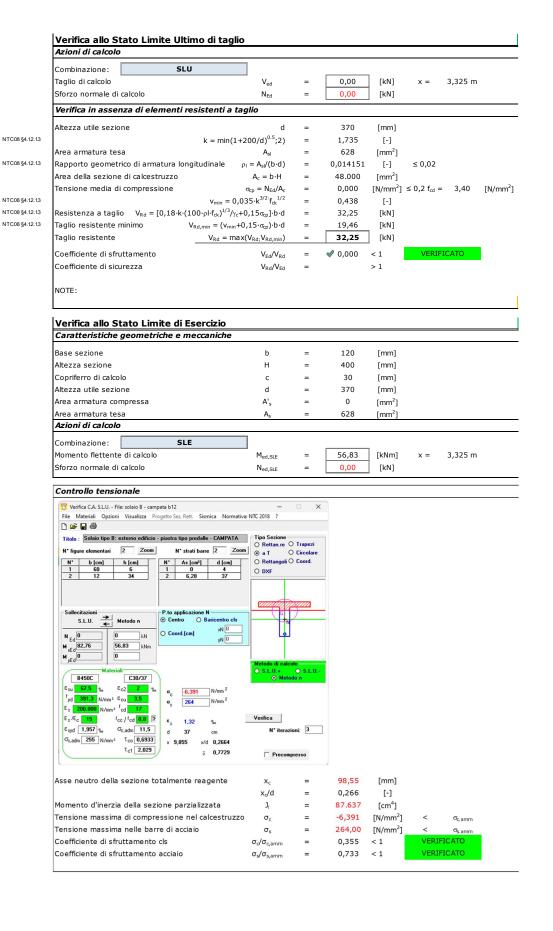
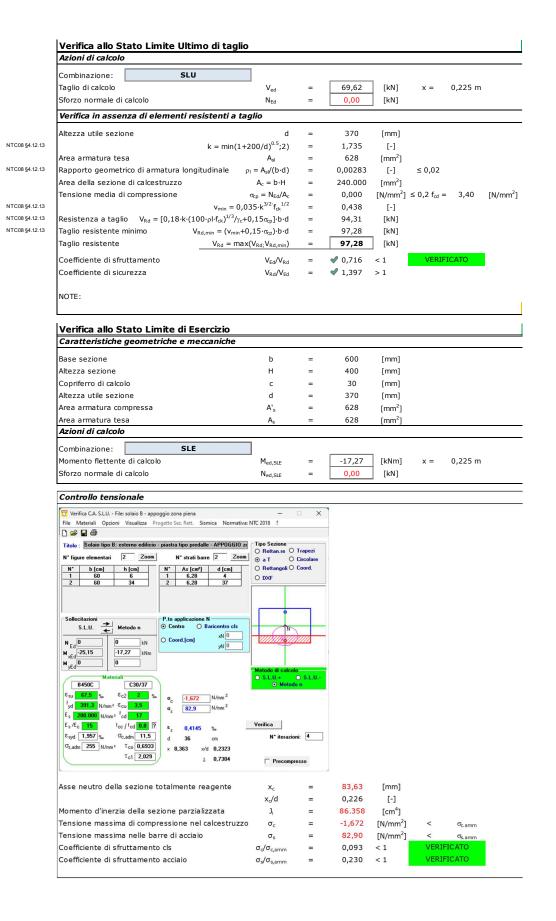
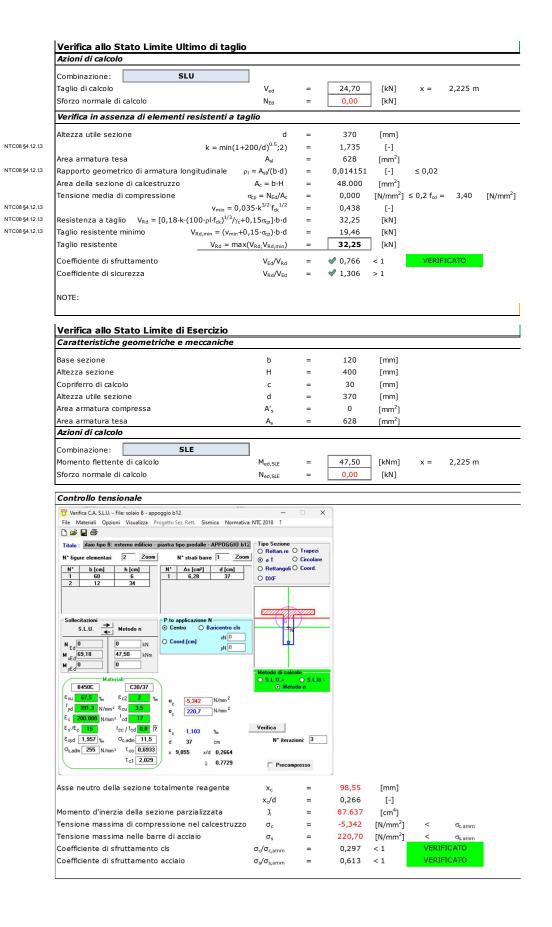

CALCOLO FRECCIA AMMISSIBILE ALLO SLE			schema statico:		trave :	trave semi-incastrata agli estremi			
✓ Freccia calcolata			SI						
MODULO ELASTICO MATERI	ALE E:		32.837	N/mm ²	***************************************	f =	3	q L ⁴	
MOMENTO D'INERZIA J _y :			87.637	cm⁴	*********	1 -	384	EJ	
Freccia ammissibile CARICO	ACCIDENTALE		L/300	=	22,17 mm	q =	15,42	kN/m	
Freccia ammissibile CARICO	TOTALE		L/250	=	26,60 mm	L =	6,65	m	
Controfreccia iniziale	f _c		0,00	mm					
Freccia carico accidentale	f _{acc}	0	0,00	mm	<	22,17	mm	Verificato	
Freccia carico totale	f _{tot}	0	8,19	mm	<	26,60	mm	Verificato	
Freccia totale netta	$f_{max} = f_{tot} - f_{c}$	0	8,19	mm	<	26,60	mm	Verificato	

DIAGRAMMA MOMENTO FLETTENTE


-60,00 -40,00 -20,00 -20,00 40,00 -0,000 2,000 4,000 6,000 8,000 -comb. SLE comb. SLU_1 comb. SLU_2




Tipo:	Solaio tipo B: esterno edificio - piastra tipo predalle h=5+34+6 cm	Sezione di verifica:	Filo appoggio
Livello:	Piano terra	Risultati all'ascissa :	0,225 m
normativa	descrizione		
	Caratteristiche geometriche della sezione		
	Dimensioni		
	possessesses		
	base della sezione b = 600	[mm]	
	altezza della sezione H = 400	[mm]	
	Copriferro netto lato superiore $c_{sup} = 30$	[mm]	
	Copriferro netto lato inferiore $q_{nf} = 30$	[mm]	
	Area calcestruzzo $A_{cls} = 0.240$	[m²]	
	Armatura longitudinale		
	armatura compressa diametro ø' = 20		[mm] Area A's
	descrizione: [lato inferiore] numero di barre n = 2		[mm] 628 [mm²]
	copriferro di calcolo c = 30 [mm] Area A·n = 628	0 0	$[mm^2]$ $\rho_{comp} = 0,262\%$
			•
	armatura tesa diametro ø = 20		[mm] Area A _s
	descrizione: [lato superiore] numero di barre n = 2		[mm] 628 [mm²]
	copriferro di calcolo c = 30 [mm] Area A·n = 628	0 0	[mm ²] $\rho_{\text{traz}} = 0,262\%$
	C		
	Caratteristiche dei materiali Calcestruzzo		
TC2018 § 112.10	Classe di resistenza	C30/37 -	[N/mm ²]
	Resistenza caratteristica a compressione cubica R _{ck}	= 37	[N/mm ²]
C2018 §112.10.1	Resistenza caratteristica a compressione cilindrica f_{ck}	= 30	[N/mm ²]
	Coefficiente riduttivo per le resistenze a lunga durata $lpha_{cc}$	= 0,85	[-]
C2018 §4.12.11	Coefficiente parziale sicurezza del calcestruzzo γ_c	= 1,50	[-]
TC2018 §4.12.11	Resistenza di calcolo a compressione f_{cd}	= 17,00	$[N/mm^2] = \alpha_{cc} \times f_{ck}/$
	f'cd	= 8,50	$[N/mm^2]$ con $v = 0,50$
	Tensione ammissibile per combinazione rara: $\sigma_{c.amm}$ Acciaio	= 18,00	$[N/mm^2] = 0,60 \times 10^{-1}$
T C2018 §11.3.2.1	Tipo di acciaio	B 450 C ▼	[N/mm ²]
	Tensione caratteristica di snervamento f _{vk}	= 450	[N/mm ²]
	Tensione caratteristica di rottura f _{tk}	= 540	[N/mm ²]
TC2018 §4.12.11	Coefficiente parziale sicurezza dell'acciaio γ _s	= 1,15	2
	Resistenza di calcolo f _{vd}	= 391	$[N/mm^2] = f_{vk}/r$
	Tensione ammissibile per combinazione caratteristica	= 360	$[N/mm^2] = 0.80 \times f$
	Coefficiente di omogeneizzazione acciaio/cls n	= 15	[-]
	Verifica allo Stato Limite Ultimo di pressoflessione	-	
	Azioni di calcolo		
	Combinazione: SLU		
	Momento flettente di calcolo M _{ed,SLU} =	-25,15 [kNm]	x = 0,225 m
	Sforzo normale di calcolo N _{ed,SLU} =	0,00 [kN]	
	Momento resistente M_{Rd} =	-85,42 [kNm]	
	Coefficiente di sfruttamento $M_{ed,SLU}$ / M_{Rc} =	√ 0,29 [-]	< 1,00 VERIFICATO
	Coefficiente di sicurezza $FS = M_{Rd} / M_{ed,SLU} =$	√ 3,40 [-]	> 1,00
	Parametri di input e risultati		
	Verifica C.A. S.L.U File: solaio B - appoggio zona piena	Solaio tipo B: esterno edificio	- piastra tipo predalle - APPOGGIO zona piena
	D ⇒ ■ ●	300	
	Titolo : Solaio tipo B: esterno edificio - piastra tipo predalle - APPOGGIO z	200	
	N° figure elementari 2 Zoom N° strati barre 2 Zoom ⊙ a T ○ Circolare	100	
	N* b [cm] h [cm] N* As [cm²] d [cm] ○ Rettangoli ○ Coord. 1 60 6 1 6,28 4 ○ DXF	1000 1000	M-NRd
	1 60 6 1 6,28 4 O DXF	51000 1000	2000 3000 4000 5000 - M-NEd
	S.L.U. — Metodo n P-to applicazione N Centro O Baricentro cls	300	ı [KN]
	N Ed U		
	M xcd 25.15		
	Materiali M _{xRd} 95.42 kN m M _{xRd} S.L.U.+ S.L.U.+		
	B450C C30/37 Metodo n		
	E _{SU} 67,5 % E _C 2 2 % σ _C -17 N/mm ² Tipo flessione • Retta • Deviata		
	'yd 391,3 N/mm² Ecu 3,5		
	Calcola MRd Dominio M.N		
	ε _s /c _c 15 c _c /cd 0.8 /γ ε _s 38.67 ‰ Calcol in 11.5 d 36 cm L _o 0 cm Col. modello		
		-	
	σ _{s,adm} 255 N/mm ² τ _{co} 0,6933 x 2,988 x/d 0,083 M-curvatura		
	05,adm 255 N/mm ² to 0.8933 x 2.988 x/d 0.083 M-curvature \$\tau_{c1}\$ 2.029 \$\times 0.7\$ Precompresso		

ello:	Solaio tipo B: esterno edificio - piastra tipo	o predalle h=5+34+6		Sezione d	i verifica:	zona	travetti 2	4 cm
	Piano terra			Risultati all	'ascissa :		1,225 m	
nativa	descrizione							
	Caratteristiche geometriche dell	a saziona						
	Dimensioni	a sezione						
				٦.,				
	base della sezione	b =	240	[mm]				
	altezza della sezione	Н =	400	[mm]				
	Copriferro netto lato superiore	c _{sup} =	30	[mm] [mm]				
	Copriferro netto lato inferiore Area calcestruzzo	C _{inf} = A _{cls} =	0.096	[m²]				
	Alea Calcesti uzzo	Ads – _	0,090	[,,,]				
	Armatura longitudinale							
	armatura compressa	diametro ø' =	20	-		[mm]	Area	A's
	descrizione: [lato superiore]	numero di barre n =	2			[mm]	628	[mm ²]
	copriferro di calcolo c = 30 [mm]	Area A·n =	628	0	0	[mm ²]	ρ _{comp} =	0,654%
	armatura tesa	diametro ø =	20			[mm]	Are	a A_s
	descrizione: [lato inferiore]	numero di barre n =	2			[mm]	628	[mm ²]
	copriferro di calcolo c = 30 [mm]	Area A·n =	628	0	0	[mm ²]	$\rho_{traz} =$	0,654%
	Caratteristiche dei materiali							
	Calcestruzzo							
11.2.10	Classe di resistenza			C30)/37 •	[N/mm ²]		
	Resistenza caratteristica a compressione		R_{dk}	=	37	[N/mm ²]		
§112.10.1	Resistenza caratteristica a compressione	cilindrica	f_{ck}	=	30	[N/mm ²]		
	Coefficiente riduttivo per le resistenze a lu	unga durata	α_{cc}	=	0,85	[-]		
§4.12.11	Coefficiente parziale sicurezza del calcest	ruzzo	γc	=	1,50	[-]		
4.12.11	Resistenza di calcolo a compressione		f_{cd}	=	17,00	[N/mm ²]	=	$\alpha_{cc} \times f_{ck} / \gamma_{c}$
			f'cd	=	8,50	[N/mm ²]	con $v =$	0,50
	Tensione ammissibile per combinazione ra Acciaio	ara:	$\sigma_{c.amm}$	=	18,00	[N/mm ²]	=	0,60 × f _{ck}
3.2.1	Tipo di acciaio			B /	50 C ▼	[N/mm ²]		
	got a more of the second second							
	Tensione caratteristica di snervamento		f_{yk}	=	450	[N/mm ²]		
	Tensione caratteristica di rottura		f_{tk}	=	540	[N/mm ²]		
12.11	Coefficiente parziale sicurezza dell'acciaio		γ_s	=	1,15	2		
	Resistenza di calcolo		f_{yd}	=	391	[N/mm ²]	=	f_{yk}/γ_s
	Tensione ammissibile per combinazione ca	aratteristica	$\sigma_{s,amm}$	=	360	[N/mm ²]	=	$0.80 \times f_{yk}$
	Coefficiente di omogeneizzazione acciaio/	cls	n	=	15	[-]		
	Verifica allo Stato Limite Ultimo	di pressoflessione	•					
	Azioni di calcolo							
	Combinazione: SLU				FI			
			=	33,24	[kNm]	x =	1,225 m	
	Momento flettente di calcolo	$M_{ed,SLU}$						
	Sforzo normale di calcolo	$N_{\text{ed,SLU}}$	=	0,00	[kN]			
	Sforzo normale di calcolo Momento resistente	$N_{ed,SLU}$ M_{Rd}	=	0,00 88,51	[kN] [kNm]			
	Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento	$N_{ed,SLU}$ M_{Rd} $M_{ed,SLU} / M_{Rc}$	=	0,00 88,51 ♂ 0,38	[kN] [kNm] [-]	< 1,00	VERIF	CATO
	Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza	$N_{ed,SLU}$ M_{Rd}	=	0,00 88,51	[kN] [kNm]	< 1,00 > 1,00	VERIF	CATO
	Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati	$\begin{aligned} N_{ed,SLU} \\ M_{Rd} \\ M_{ed,SLU} / M_{Rc} \\ FS = M_{Rd} / M_{ed,SLU} \end{aligned}$	= = =	0,00 88,51 ✓ 0,38 ✓ 2,66	[kN] [kNm] [-] [-]	> 1,00		
	Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica C.A. S.L.U File: solaio 8 - appoggio b24 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic	$\begin{array}{c} N_{ed,SLU} \\ M_{Rd} \\ M_{ed,SLU} / M_{Rc} \\ \end{array}$ FS = M_{Rd} / $M_{ed,SLU}$	=	0,00 88,51 ✓ 0,38 ✓ 2,66	[kN] [kNm] [-] [-]	> 1,00	VERIF	
	Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica CA. S.L.U File: solaio B - appoggio b24 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Signica S. S. Sismic	$\begin{array}{c} N_{ed,SLU} \\ M_{Rd} \\ M_{ed,SLU} / M_{Rt} \\ \end{array}$ $\begin{array}{c} FS = M_{Rd} / M_{ed,SLU} \\ \end{array}$ $\begin{array}{c} FS = M_{Rd} / M_{ed,SLU} \\ \end{array}$:a Normativa: NTC 2018 ?	= = =	0,00 88,51 ✓ 0,38 ✓ 2,66	[kN] [kNm] [-] [-]	> 1,00		
	Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica CA. S.L.U File: solaio B - appoggio b24 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Solaio lipo B: esterno edificio - piastra lipo predalle -	Ned,SLU MRd Med,SLU / MRi FS = MRd / Med,SLU / a Normativa: NTC 2018 ? APPOGGIO b O Rettan.re O	= = = = ×	0,00 88,51 ✓ 0,38 ✓ 2,66	[kN] [kNm] [-] [-]	> 1,00		
	Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica CA. S.L.U File: solaio B - appoggio b24 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Allo S. Solaio tipo B: esterno edificio - piastra tipo predalle N' figure elementari 2 Zoom N' strati barre	$\begin{array}{c} N_{ed,SLU} \\ M_{Rd} \\ M_{ed,SLU} / M_{Rt} \\ FS = M_{Rd} / M_{ed,SLU} \\ \end{array}$	= = = = X	0,00 88,51 • 0,38 • 2,66	[kN] [kNm] [-] [-]	> 1,00		
	Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica CA. S.L.U File: solaio 8 - appoggio b24 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Titolo: Solaio tipo 8: esterno eddicio - piastra tipo predalle N' figure elementari N' b Jem h Jem N' As [em²] 1 6.0 6	$\begin{array}{c} N_{ed,SLU} \\ M_{Rd} \\ M_{ed,SLU} / M_{Rt} \\ FS = M_{Rd} / M_{ed,SLU} \\ \end{array}$	= = = = X	0,00 88,51 ✓ 0,38 ✓ 2,66	[kN] [kNm] [-] [-]	> 1,00		.4
	Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica C.A. S.L.U File: solaio B - appoggio b24 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic i al Sissippo di Sissippo di Sissippo predalle - N' i Solaio tipo B: esterno edificio - piastra tipo predalle - N' figure elementari 2 Zoom N' strati barre N' b Lem h Lem N' As [cm²]	$\begin{array}{c} N_{ed,SLU} \\ M_{Rd} \\ M_{ed,SLU} / M_{Rt} \\ FS = M_{Rd} / M_{ed,SLU} \\ \end{array}$	= = = = X	0,00 88,51 • 0,38 • 2,66	[kN] [kNm] [-] [-]	> 1,00		4
	Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica CA. S.L.U File: solaio 8 - appoggio b24 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Titolo: Solaio tipo 8: esterno eddicio - piastra tipo predalle N' figure elementari N' b Jem h Jem N' As [em²] 1 6.0 6	$\begin{array}{c} N_{ed,SLU} \\ M_{Rd} \\ M_{ed,SLU} / M_{Rt} \\ FS = M_{Rd} / M_{ed,SLU} \\ \end{array}$	= = = = X	0,00 88,51 • 0,38 • 2,66	[kN] [kNm] [-] [-]	> 1,00		.4
	Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati □ Verifica C.A. S.L.U File: solaio 8 - appoggio b24 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic □ ☞ ☑ ☞ Titolo : Solaio tipo 8: esterno edificio - piastra tipo predalle N* figure elementari 2	$\begin{array}{c} N_{ed,SLU} \\ M_{Rd} \\ M_{ed,SLU} / M_{Rt} \\ FS = M_{Rd} / M_{ed,SLU} \\ \end{array}$	= = = X	0,00 88,51 • 0,38 • 2,66	[kN] [kNm] [-] [-]	> 1,00		.4
	Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica C.A. S.L.U File: solaio B - appoggio b24 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Trilos: Solaio lipo B: esterno edificio - piastra tipo predalle - Nº figure elementari 2 Zoom Nº strati barre Nº b [cm] Solaio Nº strati barre Nº b [cm] Nº As [cm²] 1 60.28 2 6.28 Sollecitazioni P.to applicazione Nº - Soll	$\begin{array}{c} N_{ed,SLU} \\ M_{Rd} \\ M_{ed,SLU} / M_{Ri} \\ FS = M_{Rd} / M_{ed,SLU} \end{array}$	= = = X	0,00 88,51 • 0,38 • 2,66	[kN] [kNm] [-] [-]	> 1,00		.4
	Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica C.A. S.L.U File: solaio B - appoggio b24 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Tridos: Solaio tipo B: esterno edificio - piastra tipo predalle - Nº figure elementari Nº strati barre Nº b [cn] Nº strati barre Nº b [cn] Nº A.a. [cnº] Nº A.a. [cnº] Sollecitazioni Sollecitazioni P.to applicazione Nº O Centro O Bari	Ned,SLU	= = = X	0,00 88,51 • 0,38 • 2,66	[kN] [kNm] [-] [-] 500 B. esterno edificio	> 1,00		.4
	Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica CA. S.L.U File: solaio 8 - appoggio b24 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Titolo: Solaio tipo 8: esterno edificio - piastra tipo predalle- N' figure elementari 2 Zoom N' strati bare N' b Jcm h Cm 1 6.28 2 24 34 P. Loapplicazione N S.L.U. Metodo n O Coord [cm] Sollecitazioni Metodo n O Coord [cm] Sollecitazioni O Bari O Coord [cm]	Ned,SLU	= = = X	0,00 88,51 • 0,38 • 2,66	[kN] [kNm] [-] [-] 500 B. esterno edificio	> 1,00		.4
	Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica C.A. S.L.U File: solaio B - appoggio b24 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Solaio tipo B: esterno eddicio - piastra tipo predalle - N' figure elementari 2 Zoom N' strati barre N' b [cm] h [cm] 1 50 6 2 24 34 7 1 6.28 Sollecitazioni S.L.U. Metodo n N do O N Bari O Coord [cm] M Ed O N Bari O Coord [cm] N Ed O N Bari O Coord [cm] Tipo rollus	Ned,SLU	= = = X	0,00 88,51 • 0,38 • 2,66	[kN] [kNm] [-] [-] 500 B. esterno edificio	> 1,00		.4
	Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica C.A. S.L.U File: solaio B - appoggio b24 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Traloi: Solaio tipo B: esterno edificio - piastra tipo predalle - N* figure elementari 2 Zoom N* strati barre N* b [cm] h [cm] 1 60 6 2 2 24 34 34	Ned,SLU MRd Med,SLU / MRi FS = MRd / Med,SLU	= = = X	0,00 88,51 • 0,38 • 2,66	[kN] [kNm] [-] [-] 500 B. esterno edificio	> 1,00		.4
	Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica C.A. S.L.U File solaio 8 - appoggio b24 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Titolo: Solaio lipo B: esterno edificio - piastra tipo predalle- N' figure elementari 2 Zoom N' strati barre N' b Jcm h Jcm h Jcm 1 6.28 2 24 34 2 6.28 Sollecitazioni S.L.U. Metodo n N Ed B.B.S.II Verifica Cond.[cm] N Ed B.B.S.II Verifica Cond.[cm] Materiali Made B.S.II Verifica Cond.[cm] Materiali Made B.S.II Verifica Cond.[cm]	Ned,SLU MRd Med,SLU / MRi FS = MRd / Med,SLU	Trapezi Circolare Coord.	0,00 88,51 • 0,38 • 2,66	[kN] [kNm] [-] [-] 500 B. esterno edificio	> 1,00		.4
	Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica C.A. S.L.U File: solaio 8 - appoggio b24 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Tribo: Solaio lipo B: esterno edificio - piastra tipo predalle - N' figure elementari 2 Zoom N' strati barrel N' b Jcob h Com N' strati barrel N' b Jcob h Com 1 50.2 2 4 34 2 6.28 Sollecitazioni S.L.U. Metodo n NEG 0 0 IN MEG 0 IN MEG 0 IN MEG 0 0 IN MEG 0 IN ME	Ned,SLU MRd Med,SLU / MRi FS = MRd / Med,SLU	Trapezi Ciccolare Coord.	0,00 88,51 • 0,38 • 2,66	[kN] [kNm] [-] [-] 500 B. esterno edificio	> 1,00		.4
	Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica C.A. S.L.U File: solaio 8 - appoggio b24 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Titolo: Solaio lipo B: esterno edificio - piastra tipo predalle - N' figure elementari 2 Zoom N' strati barre N' b J Con J h J Con J N' As Lon'l 1 6.28 2 24 34 2 6.28 Sollecitazioni S.L.U. Metodo n O Coord [cm] N Ed 0 0 N M M Ed 0 O D N M M M M M M M M M M M M M M M M M M	Ned,SLU MRd Med,SLU / MRi FS = MRd / Med,SLU APPOGGIO b Tipo Sezione O Rettan.re O O a T O Rettan.goli O O BARTANIO O DXF APPOGGIO b O DXF Metodo di calcol N m O S.L.U - Metodo O Metodo O S.L.U - O M	Trapezi Circolare Coord.	0,00 88,51 • 0,38 • 2,66	[kN] [kNm] [-] [-] 500 B. esterno edificio	> 1,00		.4
	Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica C.A. S.L.U File: solaio 8 - appoggio b24 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic N' ligure elementari 2 Zoom N' strati barre N' ligure elementari 2 Zoom N' strati barre	Ned,SLU MRd Med,SLU / MRi FS = MRd / Med,SLU APPOGGIO b Tipo Secione Rettancie O a T O Rettancie O DXF Metodo di calcolo N m S.L.U.+ Metodo N m O S.L.U.+ Metodo N m O Rettancie O Rettancie O S.L.U.+ Metodo O Rettancie O Rettancie O Bettancie O A T O Rettancie O Bettancie O Bettancie O Rettancie O Bettancie O Rettancie O Rett	Trapezi Circolare Coord. S.L.U Deviata rett. 100	0,00 88,51 • 0,38 • 2,66	[kN] [kNm] [-] [-] 500 B. esterno edificio	> 1,00		.4
	Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica C.A. S.L.U File: solaio B - appoggio b24 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic N' figure elementari 2 Zoom N' strati barre N' figure elementari 2 Zoom N' strati barre	Ned,SLU M _{Rd} M _{ed} ,SLU / M _{Rt} FS = M _{Rd} / M _{ed} ,SLU / M _{Rt} FS = M _{Rd} / M _{ed} ,SLU	Trapezi Circolare Coord. S.L.U Deviata rett. 100 minio M·N	0,00 88,51 • 0,38 • 2,66	[kN] [kNm] [-] [-] 500 B. esterno edificio	> 1,00		.4
	Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica C.A. S.L.U File: solaio B - appoggio b24 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic N' figure elementari 2 Zoom N' strati barre N' figure elementari 2 Zoom N' strati barre	Ned,SLU MRd Med,SLU / MRi FS = MRd / Med,SLU / MRi TS = MRd / Med,SLU / MRi Tipo Sezione Rettan.re () © a T () O DXF Metodo di calcolo N m () Mrindo di calcolo N m ()	Trapezi Circolare Coord. S.L.U Deviata rett. 100 minio M·N ol. modello	0,00 88,51 • 0,38 • 2,66	[kN] [kNm] [-] [-] 500 B. esterno edificio	> 1,00		.4
	Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica C.A. S.L.U File: solaio B - appoggio b24 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Trolo : Solaio tipo B: esterno eddicio - piastra tipo predalle N' figure elementari 2 Zoom N' strati barre N' b [cm] h [cm] 1 6.28 2 2 6.28 Sollecitazioni 2 2 Coom N' strati barre N' b [cm] h [cm] 1 6.28 2 6.28 Sollecitazioni 2 2 Coom N' strati barre N' b [cm] h [cm] 1 6.28 2 6.28 Sollecitazioni 3 6.28 2 8.87 Sollecitazioni 4 6.28 2 8.87 Sollecitazioni 5 6.29 2 8.87 Sollecitazioni 6 7.5 8.8 6.2 2 8.87 Sollecitazioni 7 8.8 6.2 2 8.87 Sollecitazioni 8 8.75 Sollecitazioni 9 6.28 17 Sollecitazioni 9 7 6 7 6 7 6 7 6 7 6 7 7 7 7 7 7 7 7 7	Ned, SLU MRd Med, SLU / MRi FS = MRd / Med, SLU / Mei Tipo Sezione Rettan.re © a T © DXF APPOGGIO bi Tipo Sezione Rettan.go i © Rettan.go i © DXF Mendo di calcolo S. L. Li Hetedo Virum 2 Virum 2 Tipo Hersione Rettan.go i © Rettan.go i © Tipo Hersione Rettan.go i © Tipo Hersione Rettan.go i © Rettan.go i Co o o o o o o o o o o o o o o o o o	Trapezi Circolare Coord. S.L.U Deviata rett. 100 minio M·N	0,00 88,51 • 0,38 • 2,66	[kN] [kNm] [-] [-] 500 B. esterno edificio	> 1,00		.4

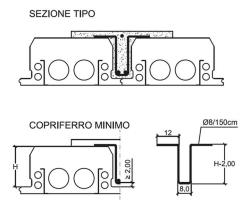
Tipo:	Solaio tipo B: esterno edificio - piastra tipo predalle h=5+34+6 cm	Sezione di verifica	zona travetti 12 cm
Livello:	Piano terra	Risultati all'ascissa	: 2,225 m
normativa	descrizione		
	Caratteristiche geometriche della sezione		
	Dimensioni		
		20 []	
		20 [mm] 00 [mm]	
	The state of the s	[mm]	
		0 [mm]	
		048 [m²]	
	Armatura longitudinale		
	armatura compressa diametro ø' =	100000000000000000000000000000000000000	[mm] Area A's
	descrizione: [lato superiore] numero di barre n =		[mm] 0 [mm²]
	copriferro di calcolo c = 30 [mm] Area A·n =	0 0 0	[mm ²] $\rho_{comp} = 0,000\%$
		.0 -	[mm] Area A _s
		2 28 0 0	[mm] 628 [mm²]
	copriferro di calcolo c = 30 [mm] Area A·n = 6.	28 0 0	$[mm^2]$ $\rho_{traz} = 1,309\%$
	Caratteristiche dei materiali		
	Calcestruzzo		
NTC2018 § 112.10	Classe di resistenza	C30/37 •	[N/mm ²]
	POSSERVIS DE PRODUCCIONALES POSSERVIS DE LA CONTRACTOR DE	= 37	[N/mm ²]
NTC2018 §112.10.1	Resistenza caratteristica a compressione cilindrica f	dk = 30	[N/mm ²]
	Coefficiente riduttivo per le resistenze a lunga durata	a _{cc} = 0,85	[-]
NTC2018 §4.12.11	Coefficiente parziale sicurezza del calcestruzzo	/c = 1,50	[-]
NTC2018 §4.12.11	2	= 17,00	$[N/mm^2] = \alpha_{cc} \times f_{ck} / \gamma_c$
		' _{cd} = 8,50	$[N/mm^2]$ con $v = 0.50$
	Tensione ammissibile per combinazione rara: $\sigma_{\!_{\!\!\!\!\!C,i}}$	amm = 18,00	$[N/mm^2] = 0,60 \times f_{ck}$
NT C2018 §11.3.2.1	Tipo di acciaio	B 450 C	N/mm²]
			[N/mm ²]
	The state of the s	7	
NTC2018 §4.12.11		$t_{tk} = 540$ $t_{tk} = 1,15$	[N/mm²] 2
		vd = 391	$[N/mm^2] = f_{vk}/\gamma_s$
		amm = 360	$[N/mm^2] = 0.80 \times f_{yk}$
	Coefficiente di omogeneizzazione acciaio/cls	n = 15	[-]
	Verifica allo Stato Limite Ultimo di pressoflessione		
	Azioni di calcolo		
	Combinazione: SLU		
	Momento flettente di calcolo M _{ed,SLU}	= 69,18 [kNm]	x = 2,225 m
	cujeco	= 0,00 [kN]	
	No.	= 87,87 [kNm]	
		= v 0,79 [-] = v 1,27 [-]	< 1,00 VERIFICATO > 1,00
		=	71,00
	Parametri di input e risultati ☐ Verifica C.A. S.L.U File: solaio 8 - appoggio b12 —	×	
	File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2018 ?	Solaio tipo B: esterno e	rdificio - piastra tipo predalle - APPOGGIO b12
		200	
	Titolo : blaio tipo B: esterno edificio - piastra tipo predalle - APP0GGIO b12 Tipo Sezione N* figure elementari 2 Zoom N* strati barre 1 Zoom 0 Retan.re 0 Trapezi		
	N* figure elementari 2 Zoom N* strati barre 1 Zoom ⊙ a T ○ Circolar N* b [cm] h [cm] N* As [cm²] d [cm] ○ Rettangoli ○ Coord.	100	
	1 60 6 1 6 2 12 34 O DXF	M [KNm]	M-NRd M-NEd
		-400 -200 0 200 400	640 840 1000 100 1400 1600
	annun annun	-50	
	Sollecitazioni S.L.U. Metodo n O Centro O Baricentro cls	-100	N [KN]
	- MID		70 (70) -
	M of 69.18 47.50 kNm		
	M yEd 0 0 Lato calcestruzzo - Acciaio snervate		
	Materiali M xRd 87.87 kN m ■ S.L.U.+ S.L.U.+ S.L.U.+ Metodo n caccolo ■ S.L.U.+ S.L.U.+ Metodo n caccolo	J.s.	
	ε _{su} 67.5 % ε _{c2} 2 % Tipo flessione		
	f _{yd} 391.3 N/mm² ε _{cu} 3.5 σ _. 391.3 N/mm² Θ Retta • Deviata		
	E ₂ 200.000 N/mm² ¹ cd 17 E ₂ 3,5 % Calcola MRd Dominio M		
	E ₂ /E _C 15 fcc/fcd 0.8 ? ε ₃ 40.15 ‰ Calcola MRd Dominio M		
	σ _{s,adm} 255 N/mm² τ _{co} 0,6933 × 2,967 ×/d 0,08018 M-curvator		
	τ _{c1} 2.029 δ 0.7 Γ Precompresso		

A.3 - 15. Verifiche statiche dei solai tipo Plastbau Metal

Si riportano di seguito le verifiche statiche dei solai di piano e di copertura del fabbricato.

Le verifiche statiche vengono eseguite con il metodo agli stati limite, secondo l'attuale normativa (NTC2018), applicando, per le azioni di calcolo, la Combinazione Fondamentale per gli Stati Limite Ultimi (SLU), di cui al §2.5.3 delle NTC2018.

Le verifiche vengono eseguite per travetto di solaio.


Per la determinazione delle sollecitazioni massime di calcolo, viene adottato uno schema statico a trave semincastrata di luce pari alla distanza tra gli assi delle travi, soggetta ad un carico uniformemente distribuito, con interasse pari a quello dei travetti di solaio.

Le verifiche di sicurezza hanno riguardato verifiche di resistenza, a flessione ed a taglio. Per luci superiori a 5,00 metri vengono inseriti dei travetti rompitratta, perpendicolari alla tessitura dei travetti, con base 25 cm e altezza 18 cm(armati con 2 0 12 superiori e 2 0 12 inferiori) allo scopo di aumentare la rigidezza della struttura nel suo assieme.

A.3 - 15.1 Verifica solai di piano e di copertura

Tutti gli impalcati ai piani superiori e la copertura sono costituiti da solai in polistirene espanso sinterizzato (EPS) tipo Plastbau ®Metal di altezza totale 40 cm (h=5+30+5cm). I solai sono formati da un pannello-cassero autoportante a geometria variabile e a coibentazione termica incorporata, per la formazione dei solai da armare e gettare in opera. I pannelli saranno predisposti all'intradosso con lamierini incorporati ad interasse cm 30 per l'avvitatura del controsoffitto in aderenza o sospeso.

Gli elementi, di larghezza 60 cm, con battentatura maschio e femmina sui bordi, saranno posti in opera perfettamente accostati su rompitratta d'armatura provvisoria alla distanza opportuna ed integrati con getto in opera di calcestruzzo a formare i travetti e la soletta dello spessore: S = cm 5 armata con rete elettrosaldata maglia cm. 20×20 , filo 6.

Le verifiche vengono differenziate in base all'ubicazione dei solai.

Per il dettaglio dei carichi, si rimanda al paragrafo specifico della presente relazione relativo all'analisi dei carichi.

A.3 - 15.1.1. Solaio di piano tipo C e D - L=6,90 m

Per tale tipologia di solai, si prevede l'impiego di travetti di larghezza 13 cm e altezza 27 cm.

INTERPIANO

Altezza totale solaio: 40 Trasmittanza termica: U = 0.149 W/m²K

Altezza solo travetto: 27 Luce di calcolo: 7.035 ml

Spessore soletta: 5 cm

Fabbisogno di Ferro d'armatura: 10.03 Kg/m²

Spessore di Real Memorto di Legatio traviatta: 8 cm.

Valore del Memorto di Legatio (VA): 63377 00 cm²

Spessore d'isolamento del sotto travetto: **8 cm** Valore del Momento di Inerzia (JXO): **63357.00 cm**⁴

Interasse travetti: 60 cm

Fabbisogno di Calcestruzzo per il getto in opera: 0.106 mc/m²

Peso Proprio del Solaio finito: 273.00 kg/m²

Sovraccarico totale oltre il peso proprio del solaio: 700 Kg

Resistenza Termica: R = 6.70 m²K/W

Rompitratta provvisori: interasse massimo 1.50 ml

Fabbisogno di mano d'opera: 0.20 ore/m² (vedi analisi

economica)

Per il calcolo precedentemente eseguito puoi richiedere inoltre:

Travetto

Con una larghezza alla base di cm 13 la nervatura consente l'impiego di tralicci reticolari standard o armatura tradizionale, fino a 3 barre nel rispetto dell'interferro minimo prescritto dalle norme.

Il carico complessivo agente in condizioni SLU, agente su un travetto, comprensivo dei coefficienti parziali di sicurezza e pari a:

CODICE CARICO	LIVELLO	TIPO	permanenti strutturali G ₁ [kN/m ²]	permanenti non strutturali G ₂ [kN/m ²]	Accidentali Q ₁	Accidentali Q ₂ [kN/m ²]	Eccezionali A _d [kN/m²]
C4		Solaio tipo C: abitazioni sopra locali commerciali	2,85	4,60	2,00	0,00	Ε, ,

$$p = 1,3 \times 2,85 + 1,5 \times 4,60 + 1,5 \times 2,00 = 13,61$$
 kN/m^2 $p = 13,61 \times 0,60$ $m = 8,16$ kN/m

CODICE CARICO	E LIVELLO TIPO		permanenti strutturali G ₁	permanenti non strutturali G ₂	Accidentali Q ₁		
			[kN/m ²]	[kN/m ²]		[kN/m ²]	[kN/m ²]
C5	Interpiano livelli 2-3	Solaio tipo D: abitazioni	2,85	4,40	2,00	0,00	

$$p = 1,3 \times 2,85 + 1,5 \times 4,40 + 1,5 \times 2,00 = 13,31$$
 kN/m^2 $p = 13,31 \times 0,60 \text{ m} = 7,98$ kN/m

Armatura inferiore in campata: $2 \phi 16$ / travetto Armatura inferiore agli appoggi: $2 \phi 16$ / travetto Armatura superiore agli appoggi: $2 \phi 20$ / travetto

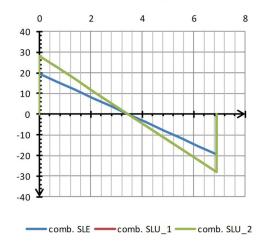
Larghezza travetto in campata: 13 cm

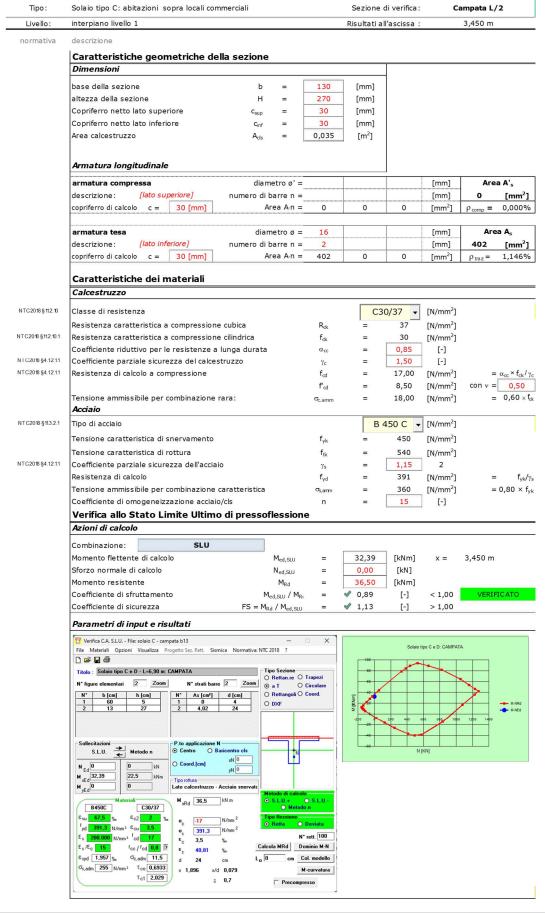
Oggetto	Ecoquartiere Ponticelli						
	C4						
	interpiano livello 1						
	Solaio tipo C: abitazioni sopra k	ocali commer	ciali			Revisione:	0
Vers. 1.00.00		SAB\CNAP005		li\[E1C_solaio C			
CARICHI DERMAI	NENTI STRUTTURALI g _{k1} :	2,850	kN/m²				
	NON STRUTTURALI g _{k2} :	4,600	kN/m²	Cat.			
TOTALE CARICHI	PERMANENTI:	7,45	kN/m²	Azione	Ψ0	Ψ ₁	Ψ2
CARICO ACCIDE	NTALE q _{k1} :	2,00	kN/m ²	c 🔻	0,70	0,70	0,60
CARICO ACCIDE	NTALE q _{k2} :	0,00	kN/m ²	<u>-</u>	0,00	0,00	0,00
				_			•
				3	Ψ0	<i>Ψ</i> 1	Ψ2
CARICO NEVE q _k	3: Neve (q. ≤ 1000 m)		kN/m ²	\rightarrow	0,50	0,20	0,00
CARICO VENTO q _{k4} :			kN/m²	\rightarrow	0,60	0,20	0,00
		L	,	i i			
CARICO CONCE	NTRATO P1:	0,000	kN	distanza da	a estremo	0,00	m
	ta PERMANENTE STRUTTURALE:	0,000	kN	=	0,00 kN/m	x	0,00 m
	RMANENTE NON STRUTTURALE:	0,000	kN	=	0,00 kN/m	x	0,00 m
	di cui quota ACCIDENTALE:	0,000	kN	=	0,00 kN/m	x	0,00 m
]				
Carico orizzontal	e H _k	0,000	kN/m				
Altezza di applica	zione	0,000	m				
Lunghezza di infl	ıenza	0,000	m				
Momento flettent	e M ₁	0,000	kN/m*m	distanza da	a estremo	0,00	m
CALCOLO CARICH	HI APPLICATI						
	ı		1				
	A PERMANENTI STRUTTURALI	0,600	m				
ZONA INFLUENZA	A ALTRI CARICHI	0,600	m				
CARICHI PERMAI	NENTI STRUTTURALI g ₁ :	2,850	x	0,600	=	1,710	kN/m
PESO PROPRIO T	RAVE					0,000	kN/m
CARICHI PERM. I	NON STRUTTURALI g ₂ :	4,600	Х	0,600	=	2,760	kN/m
CARICO TOTALE						4,470	kN/m
Altri permanenti i						0,000	kN/m
F							1,
					Azione principale	Attiva azione	Ψ0
CARICO ACCIDE	NTALE q ₁ :	2,00x0,60=	1,200	kN/m	•	☑	
CARDO ACCIDE	112	0.0000000	0,000	(N.5 m	0		15.00
EMERSO NOVI	1.0	20 08.0	13, 130903	entil o	0		get in
8 1/8/1/218 180/2/V/1 N/ 1/8/8/1 8	1.0	7. (3.7.7)	CO, CO NO	e (07 m	0		OSTAGE
	100		1				
Luce di calcolo		6,900	[m]		Coeff. Com		T
	_		1		SLE	SLU_1	SLU_2
Combinazione SL	.E rara			$\gamma_{g1} =$	1,00	1,30	1,30
				$\gamma_{g2} =$	1,00	1,50	1,50
				$\gamma_Q =$	1,00	1,50	1,50
		SL	E	SI	.U_1	SI	U_2
CARICHI DISTR	IBUITI	Ψ*γsle	q [kN/m]	Ψ*γsLU	q [kN/m]	Ψ*γslu	q [kN/m]
	NENTI STRUTTURALI g ₁ :	1,00	1,71	1,30	2,22	1,30	2,22
	NON STRUTTURALI g ₂ :	1,00	2,76	1,50	4,14	1,50	4,14
CARICO ACCIDE		1,00	1,20	1,50	1,80	1,50	1,80
CARICIO ACCIUI	NTALE 45	(3,00)	ClyCiCi	13,0803	(3,790)	CE ₁ CBCE	CB. ER.S.
SARJSON NEVE C		(0),1500	0/083	0,7%	0,00	0,75	0,00
Standard Standard Standard		76 W 20 2 W	170 C 100 D	1000	110.000	Large Asserts	

Carico Totale lineare

8,16

5,67


MOMENTO FLETTENTE								
Descrizione	ASCISSA		COND. DI CARICO					
	x [m]	SLE	SLE SLU_1					
Asse trave	0,000	-11,25 kNm	-16,19 kNm	-16,19 kNm				
Campata L/2	3,450	22,50 kNm	32,39 kNm	32,39 kNm				
Filo appoggio - trav. 13 cm	0,175	-7,91 kNm	-11,39 kNm	-11,39 kNm				
zona travetti 13 cm	1,175	7,82 kNm	11,26 kNm	11,26 kNm				
zona travetti 13 cm	2,175	17,89 kNm	25,75 kNm	25,75 kNm				


TAGLIO	х	=	0,00	m			
COND. DI CA	RICO	S	SLE	S	LU_1	SL	.U_2
CARICHI PERMANENTI		15,42	kN	21,95	kN	21,95	kN
CARICHI ACCIDENTALI		4,14	kN	6,21	kN	6,21	kN
	CARICHI TOTALI	19,56	kN	28,16	kN	28,16	kN
Risultati all'ascissa x(m) =	0,175	18,57	kN	26,73	kN	26,73	kN
Risultati all'ascissa x(m) =	1,175	12,90	kN	18,57	kN	18,57	kN
Risultati all'ascissa x(m) =	2,175	7,23	kN	10,41	kN	10,41	kN
Risultati all'ascissa x(m) =	3,450	0,00	kN	0,00	kN	0,00	kN

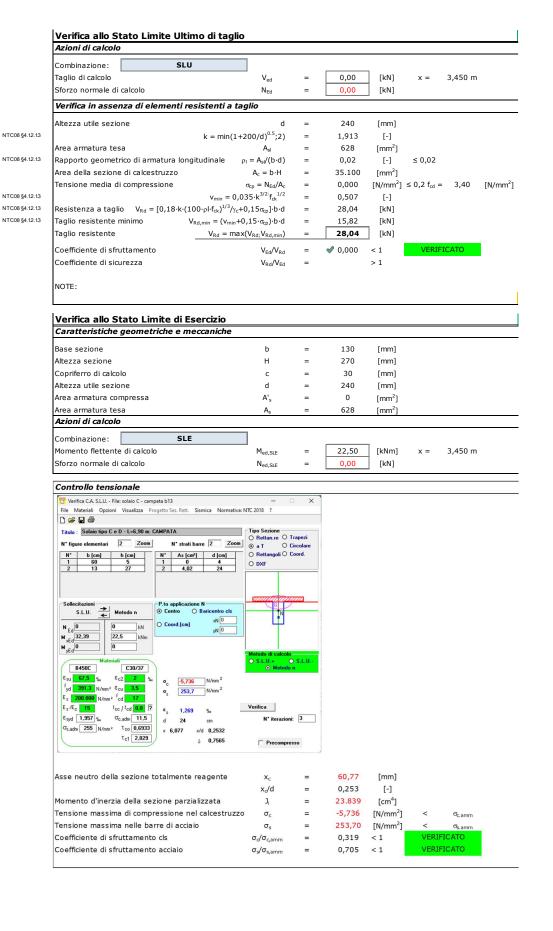
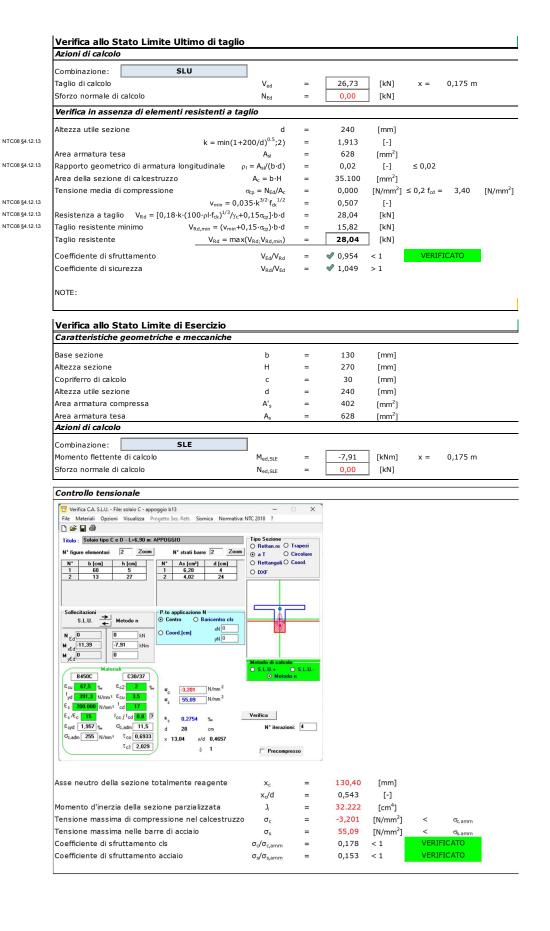

CALCOLO FRECCIA AMMISSI	BILE ALLO SLE		sche	ma statico:	trave :	semi-incastrata agli estremi			
✓ Freccia calcolata			SI						
MODULO ELASTICO MATERI	ALE E:		32.837	N/mm ²	***************************************	f =	3	q L⁴	
MOMENTO D'INERZIA J _y :			23.839	cm⁴	**********	1 =	384	EJ	
Freccia ammissibile CARICO	ACCIDENTALE		L/300	=	23,00 mm	q =	5,67	kN/m	
Freccia ammissibile CARICO	TOTALE		L/250	=	27,60 mm	L =	6,90	m	
Controfreccia iniziale	f _c		0,00	mm	3000				
Freccia carico accidentale	f _{acc}	0	2,71	mm	<	23,00	mm	Verificato	
Freccia carico totale	f _{tot}	0	12,83	mm	<	27,60	mm	Verificato	
Freccia totale netta	$f_{max} = f_{tot} - f_{c}$	0	12,83	mm	<	27,60	mm	Verificato	

DIAGRAMMA MOMENTO FLETTENTE


-20,00 -10,00 10,00 20,00 40,00 -comb. SLE comb. SLU_1 comb. SLU_2

Tipo:	Solaio tipo C: abitazioni sopra locali commerciali	Sezione di verifica:	Filo appoggio - trav. 13 cm
Livello:	interpiano livello 1	Risultati all'ascissa :	0,175 m
normativa	descrizione		
	Caratteristiche geometriche della sezione		
	Dimensioni		
	base della sezione b = 130	[mm]	
	base della sezione b = 130 altezza della sezione H = 270	[mm] [mm]	
	Copriferro netto lato superiore $c_{sup} = 30$	[mm]	
	Copriferro netto lato inferiore $q_{inf} = 30$	[mm]	
	Area calcestruzzo $A_{cls} = 0,035$	[m ²]	
	Armatura longitudinale		
	armatura compressa dia metro ø' = 16		[mm] Area A's
	descrizione: [lato inferiore] numero di barre n = 2		[mm] 402 [mm²]
	copriferro di calcolo $c = 30 \text{ [mm]}$ Area A·n = 402	0 0	[mm ²] $\rho_{comp} = 1,146\%$
	armatura tesa diametro ø = 20		[mm] Area A _s
	descrizione: [lato superiore] numero di barre n = $\frac{2}{2}$ copriferro di calcolo c = $\frac{30}{100}$ Area A·n = $\frac{628}{100}$	0 0	[mm] 628 [mm ²] $\rho_{traz} = 1,790\%$
	copinerio di calcolo C = 30 [illini] Alea Ali = 628	0 0	[mm ²] $\rho_{traz} = 1,790\%$
	Caratteristiche dei materiali		
	Calcestruzzo		
NTC2018 § 11.2.10	Classe di resistenza	C30/37 •	[N/mm ²]
	Resistenza caratteristica a compressione cubica R _{ck}	= 37	[N/mm ²]
IT C2018 §112.10.1	Resistenza caratteristica a compressione cilindrica f _{dk}	= 30	[N/mm ²]
	Coefficiente riduttivo per le resistenze a lunga durata α_{∞}	= 0,85	[-]
NTC2018 §4.12.11	Coefficiente parziale sicurezza del calcestruzzo γ _c	= 1,50	[-]
NTC2018 §4.12.1.1	Resistenza di calcolo a compressione f_{cd} f_{cd}^{\prime}	= 17,00 = 8,50	$[N/mm^2] = \alpha_{cc} \times f_{ck}/\gamma_c$ $[N/mm^2] con v = 0,50$
	Tensione ammissibile per combinazione rara: $\sigma_{c.amm}$	= 18,00	$[N/mm^2] = 0,60 \times f_{ck}$
	Acciaio	SECOLO PARAGES	[.,]
NT C2018 § 11.3.2.1	Tipo di acciaio	B 450 C ▼	[N/mm ²]
	Tensione caratteristica di snervamento f_{yk}	= 450	[N/mm ²]
	Tensione caratteristica di rottura f _{tk}	= 540	[N/mm ²]
NTC2018 §4.12.1.1	Coefficiente parziale sicurezza dell'acciaio γ_{s}	= 1,15	2
	Resistenza di calcolo f _{yd}	= 391	$[N/mm^2] = f_{yk}/\gamma_s$
	Tensione ammissibile per combinazione caratteristica osami	= 360	$[N/mm^2] = 0.80 \times f_{yk}$
	Coefficiente di omogeneizzazione acciaio/cls n Verifica allo Stato Limite Ultimo di pressoflessione	= 15	[-]
	Azioni di calcolo		
	Combinazione: SLU		
	Momento flettente di calcolo M _{ed,SLU} =	-11,39 [kNm]	x = 0,175 m
	Sforzo normale di calcolo N _{ed,SLU} =	0,00 [kN]	
	Momento resistente M_{Rd} =	-56,00 [kNm]	
	Coefficiente di sfruttamento $M_{ed,SLU} / M_{Rc} =$	√ 0,20 [-]	< 1,00 VERIFICATO
	Coefficiente di sicurezza $FS = M_{Rd} / M_{ed,SLU} =$	√ 4,92 [-]	> 1,00
	Parametri di input e risultati		
	✓ Verifica C.A. S.L.U File: solaio C - appoggio b13 — —	Solaio tino C	e D - L=6.90 m; APPOGGIO
	File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2018 ?	150	
	Titolo : Solaio tino C e D - I = 6 90 m: APPRIGGIN		PPA
	N* figure elementari 2 Zoom N* strati barre 2 Zoom © a T O Circolare		-
	N* b [cm] h [cm] N* As [cm²] d [cm] ○ Rettangoli ○ Coord. 1 60 5 1 6,28 4 ○ DXF	N KNW	M-NRd
	2 13 27 2 4,02 24 C DAY	-500 500	1000 1500 2000 M-NEd
	Sollecitazioni P.to applicazione N	-100	
	S.L.U. Metodo n © Centro O Baricentro cls	N	[KN]
	N Ed O Coord [cm]		
	M sc 11.39 -7.91 kNm N sc 0		
	Materiali M. P. 1-56 kN m Metodo di calcolo S.L.U.+ O S.L.U	Ī	
	B450C C30/37 Metodo n		
	[391 3 Name 2 Em 3 5		
	E _s 200.000 N/mm ² fcd 17 ε _c 3,5 ‰ N* rett. 100		
	E _s /E _c 15 f _{cc} /f _{cd} 0.8 ? ε _s 6.048 % Calcola MRd Dominio M·N		
	Esyd 1.957 % Co.adm 11.5 d 28 cm Lo 0 cm Col. modello Cs.adm 255 N/mm² Tco 0.6933 x 10.26 x/d 0.3666 M-curvatura] 	
	τ _{c1} 2,029 δ 0,8992 Precompresso	4	
		ا	
	o 0,0392 Precompresso		

A.3 - 15.1.1. Solaio di piano tipo C e D - L=5,50 m

Per tale tipologia di solai, si prevede l'impiego di travetti di larghezza 13 cm e altezza 27 cm.

INTERPIANO

Altezza totale solaio: 40 Trasmittanza termica: U = 0.149 W/m²K

Altezza solo travetto: 27 Luce di calcolo: 7.035 ml

Spessore soletta: 5 cm Fabbisogno di Ferro d'armatura: 10.03 Kg/m²

Spessore soletta: 5 cm Fabbisogno di Ferro d'armatura: 10.03 Kg/m²

Spessore d'isolamento del sotto travetto: **8 cm** Valore del Momento di Inerzia (JXO): **63357.00 cm**⁴

Interasse travetti: 60 cm

Fabbisogno di Calcestruzzo per il getto in opera: 0.106 mc/m²

Peso Proprio del Solaio finito: 273.00 kg/m²

Sovraccarico totale oltre il peso proprio del solaio: 700 Kg

Resistenza Termica: R = 6.70 m²K/W

Rompitratta provvisori: interasse massimo 1.50 ml

Fabbisogno di mano d'opera: 0.20 ore/m² (vedi analisi

economica)

Per il calcolo precedentemente eseguito puoi richiedere inoltre:

Travetto

Con una larghezza alla base di cm 13 la nervatura consente l'impiego di tralicci reticolari standard o armatura tradizionale, fino a 3 barre nel rispetto dell'interferro minimo prescritto dalle norme.

Il carico complessivo agente in condizioni SLU, agente su un travetto, comprensivo dei coefficienti parziali di sicurezza e pari a:

CODICE CARICO	LIVELLO	TIPO	permanenti strutturali G ₁ [kN/m ²]	permanenti non strutturali G ₂ [kN/m ²]	Accidentali Q ₁	Accidentali Q ₂ [kN/m ²]	Eccezionali A _d [kN/m²]
C4		Solaio tipo C: abitazioni sopra locali commerciali	2,85	4,60	2,00	0,00	Ε, ,

$$p = 1,3 \times 2,85 + 1,5 \times 4,60 + 1,5 \times 2,00 = 13,61$$
 kN/m^2 $p = 13,61 \times 0,60 \text{ m} = 8,16$ kN/m

CODICE CARICO	DICE LIVELLO TIPO		permanenti strutturali G ₁	permanenti non strutturali G ₂	Accidentali Q ₁	Accidentali Q ₂	Eccezionali A _d
			[kN/m ²]	[kN/m ²]		[kN/m ²]	[kN/m ²]
C5	Interpiano livelli 2-3	Solaio tipo D: abitazioni	2,85	4,40	2,00	0,00	

$$p = 1,3 \times 2,85 + 1,5 \times 4,40 + 1,5 \times 2,00 = 13,31$$
 kN/m^2 $p = 13,31 \times 0,60 \text{ m} = 7,98$ kN/m

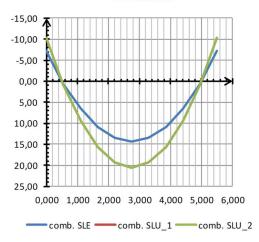
Armatura inferiore in campata: $2 \phi 14 / \text{travetto}$ Armatura inferiore agli appoggi: $2 \phi 14 / \text{travetto}$ Armatura superiore agli appoggi: $2 \phi 14 / \text{travetto}$

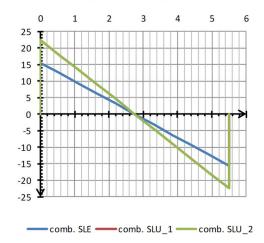
Larghezza travetto in campata: 13 cm

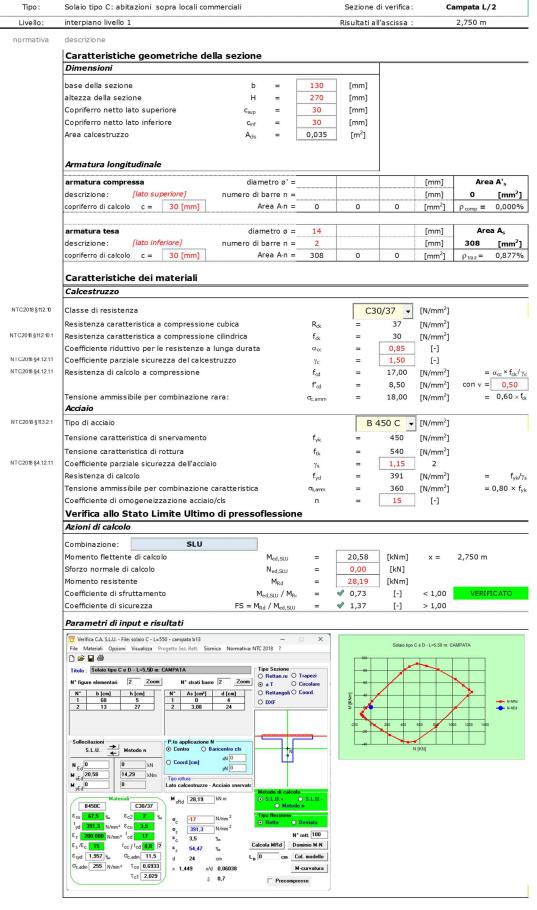
Oggetto	Ecoquartiere Ponticelli						
Codice carico	C4						
Livello	interpiano livello 1						
Tipo	Solaio tipo C: abitazioni sopra l	ocali commer	ciali			Revisione:	0
Vers. 1.00.00	C:\Lavori	iSAB\CNAP005N	lapoli Ponticel	li\[E1C_solaio C	- L=550_Verifica s	olaio CA vers. 1	.00.00.xlsm]so
CARICHI PERMA	ANENTI STRUTTURALI g _{k1} :	2,850	kN/m²				
	NON STRUTTURALI g _{k2} :	4,600	kN/m²	Cat.			
TOTALE CARICI	HI PERMANENTI:	7,45	kN/m ²	Azione	Ψ0	<i>Ψ</i> 1	Ψ2
CARICO ACCID	ENTALE q _{k1} :	2,00	kN/m²	C 🔻	0,70	0,70	0,60
CARICO ACCID	ENTALE q _{k2} :	0,00	kN/m²		0,00	0,00	0,00
							I
					Ψ0	Ψ1	Ψ2
CARICO NEVE	Neve (q. ≤ 1000 m)		kN/m²	\rightarrow	0,50	0,20	0,00
CARICO VENTO			kN/m ²	<i>,</i> →	0,60	0,20	0,00
CANALOG VENTO	Чк4•		KIN/III	,	0,00	0/20	0,00
CARICO CONCE	ENTRATO P.	0,000	kN	distanza da	a estremo	0,00	m
		0,000		=			
	DETAIL PERMANENTE STRUTTURALE:		kN kN	=	0,00 kN/m	X	0,00 m
di cui quota P	ERMANENTE NON STRUTTURALE:	0,000	kN		0,00 kN/m	Х	0,00 m
	di cui quota ACCIDENTALE:	0,000	kN	=	0,00 kN/m	X	0,00 m
Carico orizzonta	ile H _k	0,000	kN/m				
Altezza di applio	azione	0,000	m				
Lunghezza di inf	luenza	0,000	m				
Momento fletten	te M ₁	0,000	kN/m*m	distanza da	a estremo	0,00	m
CALCOLO CARIO	CHI APPLICATI						
ZONA INFLUENZ	A PERMANENTI STRUTTURALI	0,600	m				
ZONA INFLUENZ	A ALTRI CARICHI	0,600	m				
					1		1
CARICHI PERMA	ANENTI STRUTTURALI g ₁ :	2,850	X	0,600	=	1,710	kN/m
PESO PROPRIO	TRAVE					0,000	kN/m
CARICHI PERM.	NON STRUTTURALI g ₂ :	4,600	X	0,600	=	2,760	kN/m
CARICO TOTAL	E PERMANENTI:					4,470	kN/m
Altri permanent	non strutturali:					0,000	kN/m
					Azione	Attiva	
					principale	azione	Ψ0
CARICO ACCID	ENTALE q ₁ :	2,00x0,60=	1,200	kN/m	•	~	
					0		18,000
FINEDERS NEWS	£.q.	20 02,0	108,030303	₹N# 1	0		o _i tto
STATES OF STATES	8 10	72. Ch. (L.)	Ca, Ch hia	SN/ m	0		0,50
i					0 " 0		
Luce di calcolo		5,500	[m]		Coeff. Com		
Combinazione S	II E				SLE 1.00	SLU_1	SLU_2
Combinazione S	iLE rara			$\gamma_{g1} = \gamma_{g1} = \gamma_{g1}$	1,00	1,30	1,30 1,50
				$\gamma_{g2} =$ $\gamma_{e} =$	1,00	1,50	1,50
				$\gamma_Q =$	_,-,	_,	
		SL	E	SL	.U_1	SLU	J_2
CARICHI DISTI	RIBUITI	Ψ*γsle	q [kN/m]	Ψ*γςιυ	q [kN/m]	Ψ*γslu	q [kN/m]
CARICHI PERMA	ANENTI STRUTTURALI g ₁ :	1,00	1,71	1,30	2,22	1,30	2,22
CARICHI PERM.	NON STRUTTURALI g ₂ :	1,00	2,76	1,50	4,14	1,50	4,14
CARICO ACCID	ENTALE q ₁ :	1,00	1,20	1,50	1,80	1,50	1,80
81A E 18180 A 8181110	LVIALL49	(3,00)	Chicken	13,0303	(3, (26.)	'CE ₁ (3CE	OLERS
STANE ISSUE NA WELL	<u> </u>	(0),15(0)	C#/CRC3	$\Omega_{i} Z^{i}$	(8,1303)	Q,7%	0,00
		(0), (50)		TEX FIRM	DC CND		

Carico Totale lineare

8,16


5,67


MOMENTO FLETTENTE				
Descrizione	ASCISSA		COND. DI CARICO	
	x [m]	SLE	SLU_1	SLU_2
Asse trave	0,000	-7,15 kNm	-10,29 kNm	-10,29 kNm
Campata L/2	2,750	14,29 kNm	20,58 kNm	20,58 kNm
Filo appoggio - trav. 13 cm	0,175	-4,50 kNm	-6,49 kNm	-6,49 kNm
zona travetti 13 cm	1,175	7,26 kNm	10,45 kNm	10,45 kNm
zona travetti 13 cm	2,175	13,36 kNm	19,23 kNm	19,23 kNm


TAGLIO	х	=	0,00	m			
COND. DI CA	RICO	S	SLE	S	LU_1	SL	.U_2
CARICHI PERMANENTI		12,29	kN	17,50	kN	17,50	kN
CARICHI ACCIDENTALI		3,30	kN	4,95	kN	4,95	kN
	CARICHI TOTALI	15,59	kN	22,45	kN	22,45	kN
Risultati all'ascissa x(m) =	0,175	14,60	kN	21,02	kN	21,02	kN
Risultati all'ascissa x(m) =	1,175	8,93	kN	12,86	kN	12,86	kN
Risultati all'ascissa x(m) =	2,175	3,26	kN	4,69	kN	4,69	kN
Risultati all'ascissa x(m) =	2,750	0,00	kN	0,00	kN	0,00	kN

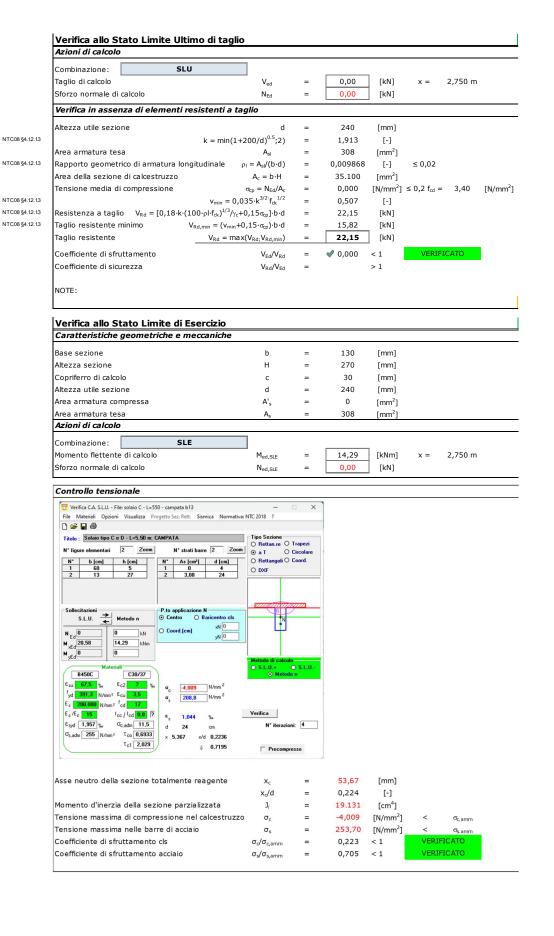
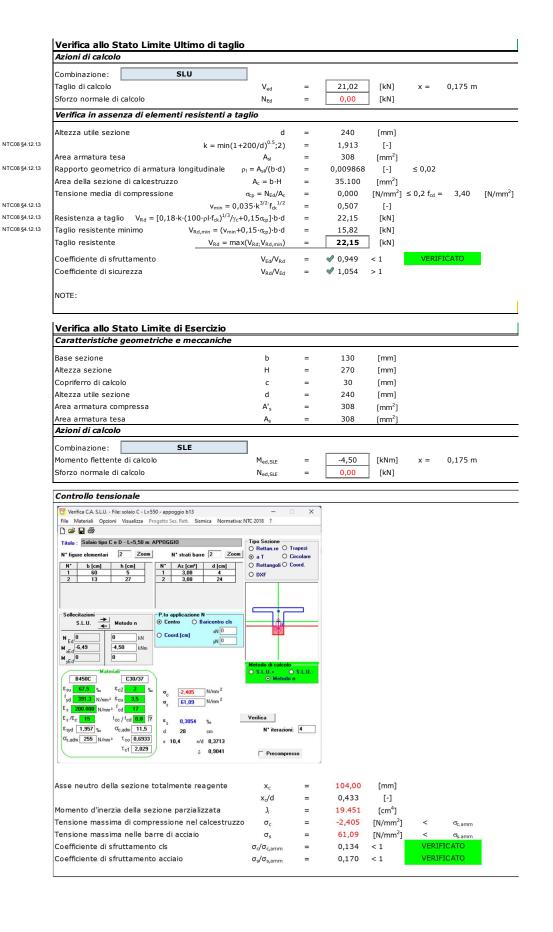

CALCOLO FRECCIA AMMISSI	BILE ALLO SLE		sche	ma statico:	trave :	semi-incast	i-incastrata agli estremi			
✓ Freccia calcolata			SI							
MODULO ELASTICO MATERI	ALE E:		32.837	N/mm ²	***************************************	f =	3	q L ⁴		
MOMENTO D'INERZIA J _y :			19.131	cm⁴	*****	r =	384	EJ		
Freccia ammissibile CARICO	ACCIDENTALE		L/300	=	18,33 mm	q =	5,67	kN/m		
Freccia ammissibile CARICO	TOTALE		L/250	=	22,00 mm	L =	5,50	m		
Controfreccia iniziale	f _c		0,00	mm	****					
Freccia carico accidentale	f _{acc}	0	1,37	mm	<	18,33	mm	Verificato		
Freccia carico totale	f _{tot}	0	6,45	mm	<	22,00	mm	Verificato		
Freccia totale netta	$f_{max} = f_{tot} - f_{c}$	0	6,45	mm	<	22,00	mm	Verificato		

DIAGRAMMA MOMENTO FLETTENTE



	Solaio tipo C: abitazioni sopra locali comm	nerciali		Sezione di v	erifica:	Filo appo	oggio - tra	v. 13 cm
Livello:	interpiano livello 1			Risultati all'as	scissa :		0,175 m	
ormativa	descrizione							
	Caratteristiche geometriche dell	a sezione						
	Dimensioni							
	base della sezione	b = [130	[mm]				
	altezza della sezione	H =	270	[mm]				
	Copriferro netto lato superiore	c _{sup} =	30	[mm]				
	Copriferro netto lato inferiore	G _{nf} =	30	[mm]				
	Area calcestruzzo	A _{cls} =	0,035	[m ²]				
		, ds	-,	11				
	Armatura longitudinale							
	armatura compressa	diametro ø' =	14			[mm]	Are	a A's
	descrizione: [lato inferiore]	numero di barre n =	2			[mm]	308	[mm²]
	copriferro di calcolo c = 30 [mm]	Area A·n =	308	0	0	[mm ²]	ρ_{comp} =	0,877%
	armatura tesa	diametro ø =	14			[mm]		a A _s
	descrizione: [lato superiore]	numero di barre n =	2			[mm]	308	[mm ²]
	copriferro di calcolo c = 30 [mm]	Area A·n =	308	0	0	[mm ²]	$\rho_{traz} =$	0,877%
	Caratteristiche dei materiali							
	Calcestruzzo							
C2018 § 11.2.10				000.5	27	[N]/ 2-		
∪20 to § Ti 2.10	Classe di resistenza		-	C30/3		[N/mm ²]		
C2018 §112.10.1	Resistenza caratteristica a compressione		R _{dk}	=	37	[N/mm ²]		
JEU 10 9 11 2.7U.7	Resistenza caratteristica a compressione		f _{ck}		30	[N/mm ²]		
C2018 §4.12.11	Coefficiente riduttivo per le resistenze a la	_	α_{cc}	-	0,85	[-]		
C2018 §4.12.11	Coefficiente parziale sicurezza del calcesti Resistenza di calcolo a compressione	14220	γ _c	-	1,50 17,00	[-] [N/mm ²]	_	a ×f./
020034.12.11	Resistenza di calcolo a compressione		f _{cd} f' _{cd}		8,50	[N/mm ²]		$\alpha_{cc} \times f_{ck} / 0,50$
	Tensione ammissibile per combinazione ra	ıra:	σ _{c.amm}		18,00	[N/mm ²]		0,60 ×
C2018 §11.3.2.1	Acciaio Tipo di acciaio			B 450	0 C 🔻	[N/mm ²]		
	Tensione caratteristica di snervamento							
	CONTROL TO CONTROL SECURIO SECURIO SE CONTROL SE CONTROL SE SE CONTROL SE SE CONTROL SE SE CONTROL SE		f _{yk}	=	450	[N/mm ²]		
C2018 §4.12.1.1	Tensione caratteristica di rottura		f_{tk}	= _	540	[N/mm ²]		
G20 10 94. 12. 1.1	Coefficiente parziale sicurezza dell'acciaio Resistenza di calcolo		γs •	=	391	2 [N/2]	=	•
	Tensione ammissibile per combinazione ca	rattoristica	f _{yd}	=	360	[N/mm ²] [N/mm ²]		f_{yk} / 0,80 × f
	Coefficiente di omogeneizzazione acciaio/		o _{s,amm} n		15	[-]	_	0,00 ^ 1
		CIS			13	r 1		
		di pressoflession	a					
	Verifica allo Stato Limite Ultimo	di pressoflession	e					
	Verifica allo Stato Limite Ultimo Azioni di calcolo	di pressoflession	e					
	Verifica allo Stato Limite Ultimo	•	e 	-6.49	[kNm1	x =	0,175 m	
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU	M _{ed} ,stu			[kNm]	x =	0,175 m	
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo	M _{ed} ,SLU	=	0,00	[kN]	x =	0,175 m	
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente	M _{ed} ,slu N _{ed} ,slu M _{Rd}	= = =	0,00 -30,66	[kN] [kNm]			ICATO
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento	M _{ed,SLU} N _{ed,SLU} M _{Rd} M _{ed,SLU} / M _{Rr}	= =	0,00 -30,66 ♂ 0,21	[kN] [kNm] [-]	< 1,00		ICATO
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente	M _{ed} ,slu N _{ed} ,slu M _{Rd}	= = = =	0,00 -30,66	[kN] [kNm]			ICATO
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifico CA. S.L.U File: solaio C - L=550 - appoggio b13	$M_{ed,SLU}$ $N_{ed,SLU}$ M_{Rd} $M_{ed,SLU} / M_{Rr}$ $FS = M_{Rd} / M_{ed,SLU}$	= = = =	0,00 -30,66 ♂ 0,21	[kN] [kNm] [-] [-]	< 1,00 > 1,00	VERIF	IC ATO
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Tele Matriali Opzioni Visualizza Progetto Sez. Rett. Sismic	$M_{ed,SLU}$ $N_{ed,SLU}$ M_{Rd} $M_{ed,SLU} / M_{Rr}$ $FS = M_{Rd} / M_{ed,SLU}$	= = =	0,00 -30,66 ♂ 0,21	[kN] [kNm] [-] [-]	< 1,00	VERIF	ICATO
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica CA. S.L.U Files solaio C - L=550 - appoggio b13 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic	Med, SLU Ned, SLU MRd Med, SLU MRd Med, SLU / MRc FS = MRd / Med, SLU ta Normativa: NTC 2018 ?	= = =	0,00 -30,66 ♂ 0,21	[kN] [kNm] [-] [-]	< 1,00 > 1,00	VERIF	ICATO
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica CA. S.L.U File solaio C - L=550 - appoggio b13 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Dialo Solaio tipo C e D - L=5,50 ac APPOGGIO	Med, SLU Ned, SLU MRd Med, SLU / MRc FS = MRd / Med, SLU - Tipo Sezione O Rettan.re O Rettan.re	= = = = = = Trapezi	0,00 -30,66 ♂ 0,21	[kN] [kNm] [-] [-]	< 1,00 > 1,00	VERIF	ICATO
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica C.A. S.L.U File: solaio C - L=550 - appoggio b13 File: Materiali Opzioni Visualizza Progetto Sez. Rett. Sismio Jian S. Solaio tipo C e D - L=530 m: APPOGGIO N' figure elementari Z. Zoom N' strati barre	M _{ed} , SLU N _{ed} , SLU N _{ed} , SLU M _{Rd} M _{ed} , SLU / M _{RL} FS = M _{Rd} / M _{ed} , SLU	= = = = X	0,00 -30,66 \$\psi\$ 0,21 \$\psi\$ 4,73	[kN] [kNm] [-] [-]	< 1,00 > 1,00	VERIF	ICATO
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica C.A. S.L.U File: solaio C - L=550 - appoggio b13 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismio Dia Ateriali Opzioni Visualizza Progetto Sez. Rett. Sismio Titolo: Solaio tipo C e D - L=5,50 m: APPOGGIO N* figure elementari Z Zoom N* strati barre N* b [cm] h [cm] N* As [cm²] 1 3,08	M _{ed} , SLU N _{ed} , SLU M _{Rd} M _{ed} , SLU / M _{Rd} M _{ed} , SLU / M _{Rd} FS = M _{Rd} / M _{ed} , SLU	= = = = X	0,00 -30,66 \$\psi\$ 0,21 \$\psi\$ 4,73	[kN] [kNm] [-] [-]	< 1,00 > 1,00	VERIF	IC ATO
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica CA S.L.U File: solaio C - L=550 - appoggio b13 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Diale 18 18 18 18 18 18 18 18 18 18 18 18 18	M _{ed} , SLU Ned, SLU M _{Rd} M _{ed} , SLU / M _{Rd} FS = M _{Rd} / M _{ed} , SLU - ta Normativa: NTC 2018 ? Tipo Sezione O Rettan. to O Q at T O Rettangoli O	= = = = X	0,00 -30,66 ♂ 0,21	[kN] [kNm] [-] [-]	< 1,00 > 1,00	VERIF	- M-NRd
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica C.A. S.L.U File: solaio C - L=550 - appoggio b13 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismio Dia Ateriali Opzioni Visualizza Progetto Sez. Rett. Sismio Titolo: Solaio tipo C e D - L=5,50 m: APPOGGIO N* figure elementari Z Zoom N* strati barre N* b [cm] h [cm] N* As [cm²] 1 3,08	M _{ed} , SLU N _{ed} , SLU M _{Rd} M _{ed} , SLU / M _{Rd} M _{ed} , SLU / M _{Rd} FS = M _{Rd} / M _{ed} , SLU	= = = = X	0,00 -30,66 \$\psi\$ 0,21 \$\psi\$ 4,73	[kN] [kNm] [-] [-]	< 1,00 > 1,00	VERIF	- M-NRd
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica CA S.L.U File: solaio C - L=550 - appoggio b13 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismi Verifica CA S.L.U File: solaio C - L=550 m: APPOGGIO N° file: Solaio tipo C e D - L-5,50 m: APPOGGIO N° strati barre N° b [cm] h [cm] 1 60 5 2 13 27 13.08	Med, SLU Ned, SLU MRd Med, SLU / MRd Med, SLU / MRd FS = MRd / Med, SLU 2 Zoom Q a T Q Rettan, e Q Q a T Q DXF	= = = = X	0,00 -30,66 \$\psi\$ 0,21 \$\psi\$ 4,73	[kN] [kNm] [-] [-] Solaio tipo C o	< 1,00 > 1,00 > 0 - L=5,50 m: AF	VERIF	M-NRd
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica C.A. S.L.U File: solaio C - L=550 - appoggio b13 File: Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Silve alla composi visualizza Progetto Sez. Rett. Sismic N° tigure elementari Z Zoom N° strati bare N° b [cm] h [cm] 1 50 5 5 2 13 27 P. to applicazione N° Sollecitazioni P. to applicazione N°	M _{ed,SLU} N _{ed,SLU} M _{Rd} M _{ed,SLU} / M _{Rd} M _{ed,SLU} / M _{Rd} FS = M _{Rd} / M _{ed,SLU} 2 Zoom Tipo Sezione O Rettan.re O a T O Rettan.goi O bVxF	= = = = X	0,00 -30,66 \$\psi\$ 0,21 \$\psi\$ 4,73	[kN] [kNm] [-] [-] Solaio tipo C o	< 1,00 > 1,00	VERIF	M-NRd
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica C.A. S.L.U File: solaio C - L=550 - appoggio b13 File: Materiali Opzioni Visualizza Progetto Sez. Rett. Sismio Verifica C.A. S.L.U File: solaio C - L=550 m: APPOGGIO N' figure elementari Z Zoom N' strati barre N' b [cm] h [cm] N' Az [cm] 1 3.08 2 3.08 2 3.08 2 3.08 2 3.08 3 0 C Centro D Bar	Med, SLU Ned, SLU Med Med, SLU / Med Med, SLU / Med TS = Med / Med, SLU Tipo Sezione O Rettante O O a T O Rettangli O DXF	= = = = X	0,00 -30,66 \$\psi\$ 0,21 \$\psi\$ 4,73	[kN] [kNm] [-] [-] Solaio tipo C o	< 1,00 > 1,00 > 0 - L=5,50 m: AF	VERIF	→ M-NRd
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Tele Verifica CA. S.L.U File: solaio C - L=550 - appoggio b13 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismin William Signation S	Med, SLU Ned, SLU Ned, SLU MRd Med, SLU / MRc FS = MRd / Med, SLU Tipo Sezione O Rettan. 1e O a T O Rettan. 2e O b C T O DXF	= = = = X	0,00 -30,66 \$\psi\$ 0,21 \$\psi\$ 4,73	[kN] [kNm] [-] [-] Solaio tipo C o	< 1,00 > 1,00 > 0 - L=5,50 m: AF	VERIF	→ M-NRd
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Tele Materiali Opzioni Visualizza Progetto Sez. Rett. Sismie Titolo: Solaio tipo C e D - L-5.50 m. APPOGGIO N' figure elementari Z Zoom N' strati barre N' b [cm] h [cm] N' Az [cm²] 1 3.08 2 13 3.08 Sollocitazioni SLU. — Metodo n Coord. [cm] N scd Saro N scd Saro N Saro	Med, SLU Ned, SLU MRd Med, SLU / MRc FS = MRd / Med, SLU Tipo Sezione Rettan. te O a T O Rettanglo O DXF Metato if catcol Metato if catcol	= = = = = = = = = = X	0,00 -30,66 \$\psi\$ 0,21 \$\psi\$ 4,73	[kN] [kNm] [-] [-] Solaio tipo C o	< 1,00 > 1,00 > 0 - L=5,50 m: AF	VERIF	→ M-NRd
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica C.A. S.L.U File solaio C - L=550 - appoggio b13 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Verifica C.A. S.L.U File solaio C - L=550 - appoggio b13 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Verifica C.A. S.L.U File solaio C - L=550 - appoggio b13 Tile Materiali Visualizza Progetto Sez. Rett. Sismic Verifica C.A. S.L.U File solaio C - L=550 - appoggio b13 Tile Materiali Visualizza Progetto Sez. Rett. Sismic Verifica C.A. S.L.U Solaio tipo C e D - L-5,50 m. APPOGGIO N' strati barre N' b [cm]	Med, SLU Ned, SLU Med, SLU Med, SLU Med, SLU Med, SLU Med, SLU FS = M _{Rd} / M _{ed} , SLU ta Normativa: NTC 2018 ? Tipo Sezione Rettan.re ○ ② a T ○ ③ Rettan.goi ○ ② DXF Metdodo di calcoli N m Metdodo di calcoli SLU **	= = = = = = = = = = = = = = = = = = =	0,00 -30,66 \$\psi\$ 0,21 \$\psi\$ 4,73	[kN] [kNm] [-] [-] Solaio tipo C o	< 1,00 > 1,00 > 0 - L=5,50 m: AF	VERIF	→ M-NRd
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica C.A. S.L.U File solaio C - L=550 - appoggio b13 File Materiali Oppioni Visualizza Progetto Sez. Rett. Sizmio Westeriali Oppioni Visualizza Progetto Sez. Rett. Sizmio N° Ingue elementari 2 Zoom N° strati barre N° b [cm] h [cm] 1 3.08 2 3.08 Sollecitazioni 2 27 2 3.08 Sollecitazioni 0 blN N° Ed 0 5.43 0 blNm N° Ed 0 0 blN M° Ed 0 0 blN	Med, SLU Ned, SLU Med Med, SLU Med	= = = = = = = = = = = = = = = = = = =	0,00 -30,66 \$\psi\$ 0,21 \$\psi\$ 4,73	[kN] [kNm] [-] [-] Solaio tipo C o	< 1,00 > 1,00 > 0 - L=5,50 m: AF	VERIF	M-NRd
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica CA. S.L.U File solaio C - L=550 - appoggio b13 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Verifica CA. S.L.U File solaio C - L=550 - appoggio b13 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Verifica CA. S.L.U File solaio C - L=550 - appoggio b13 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Verifica CA. S.L.U File solaio C - L=550 - appoggio b13 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Sollocitazioni S.L.U Metodo n N	Med, SLU Ned, SLU Med Med, SLU Med Med Med, SLU Tipo Sezione Rettan.e Rettangoi Rettangoi Metodo di calcol N m Metodo S.L.U. Metodo	= = = = = = = = = = = = = = = = = = =	0,00 -30,66 \$\psi\$ 0,21 \$\psi\$ 4,73	[kN] [kNm] [-] [-] Solaio tipo C o	< 1,00 > 1,00 > 0 - L=5,50 m: AF	VERIF	M-NRd
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica CA. S.L.U File: solaio C - L=550 - appoggio b13 File: Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Verifica CA. S.L.U File: solaio C - L=550 - appoggio b13 File: Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Verifica CA. S.L.U File: solaio C - L=550 - appoggio b13 File: Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Verifica CA. S.L.U File: solaio C - L=550 - appoggio b13 File: Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic N* figure elementari [2] Zoom N* strati barre N* b [cm] h [cm] N* As [cm*] 1 3.08 2	Med, SLU Ned, SLU Ned, SLU MRd Med, SLU MRd Med, SLU MRd Med, SLU Tipo Sezione O Rettan.e O a 1 O Rettangoli O DXF Metodo di calcoli N M SLU Metodo SLU	Trapezi Circolare Coord.	0,00 -30,66 \$\psi\$ 0,21 \$\psi\$ 4,73	[kN] [kNm] [-] [-] Solaio tipo C o	< 1,00 > 1,00 > 0 - L=5,50 m: AF	VERIF	→ M-NRd
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Verifica CA. S.L.U File: solaio C - L=550 - appoggio b13 File: Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Verifica CA. S.L.U File: solaio C - L=550 - appoggio b13 File: Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Verifica CA. S.L.U File: solaio C - L=550 - appoggio b13 File: Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Verifica CA. S.L.U File: solaio C - L=550 - appoggio b13 File: Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic N* figure elementari [2] Zoom N* strati barre N* b [cm] h [cm] 1	Med, SLU Ned, SLU MRd Med, SLU FS = MRd / Med, SLU Tipo Sezione O Rettan.e O O a Tipo Medical for Calcol N M Medical for Calcol Medical for Calcol Mrma O Rettan.e Tipo Metical for Calcol Mrma O Rettan.e Medical for Calcol Mrma O Rettan.e Tipo Metical for Calcol Mrma O Rettan.e Medical for Calcol Mrma O Rettan.e Mrma O Rettan.e Mrma O Rettan.e Medical for Calcol Mrma O Rettan.e	Trapezi Circolare Coord. Deviata rett. 100 minio M-N	0,00 -30,66 \$\psi\$ 0,21 \$\psi\$ 4,73	[kN] [kNm] [-] [-] Solaio tipo C o	< 1,00 > 1,00 > 0 - L=5,50 m: AF	VERIF	M-NRd
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati □ Verifica CA S.L.U File: solaio C - L=550 - appoggio b13 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismie □ Verifica CA S.L.U File: solaio C - L=550 - appoggio b13 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismie □ Verifica CA S.L.U File: solaio C - L=550 - appoggio b13 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismie □ Verifica CA S.L.U File: solaio C - L=550 - appoggio b13 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismie □ Verifica CA S.L.U File: solaio C - L=550 - appoggio b13 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismie □ Verifica CA S.L.U File: solaio C - L=550 - appoggio b13 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismie □ Verifica CA S.L.U File: solaio C - L=550 - appoggio b13 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismie □ Verifica CA S.L.U File: solaio C - L=550 - appoggio b13 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismie □ Verifica CA S.L.U File: solaio C - L=550 - appoggio b13 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismie □ Verifica CA S.L.U File: solaio C - L=550 - appoggio b13 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismie □ Verifica CA S.L.U File: solaio C - L=550 - appoggio b13 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismie □ Verifica CA S.L.U File: solaio C - L=550 - appoggio b13 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismie □ Verifica CA S.L.U File: solaio C - L=550 - appoggio b13 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismie □ Verifica CA S.L.U File: solaio C - L=550 - appoggio b13 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismie □ V.L.U	Med, SLU Ned, SLU MRd Med, SLU / MRd	= = = = = = = = = = = = = = = = = = =	0,00 -30,66 \$\psi\$ 0,21 \$\psi\$ 4,73	[kN] [kNm] [-] [-] Solaio tipo C o	< 1,00 > 1,00 > 0 - L=5,50 m: AF	VERIF	→ M-NRd
	Verifica allo Stato Limite Ultimo Azioni di calcolo Combinazione: SLU Momento flettente di calcolo Sforzo normale di calcolo Momento resistente Coefficiente di sfruttamento Coefficiente di sicurezza Parametri di input e risultati Tele Materiali Opzioni Visualizza Progetto Sez. Rett. Sismic Mingue elementari 2 Zoom N' strati barre N' b [cm] b [cm] 1 3.08 2 3.08 Tatol: Solaio tipo C o D - L-5,50 m: APPOGGIO N' figue elementari 2 Zoom N' strati barre N' b [cm] b [cm] 1 3.08 2 3.08 Zoom N' strati barre N' b [cm] b [cm] 1 1 3.08 Zoom N' strati barre N' b [cm] b [cm] 1 1 3.08 Zoom N' strati barre N' b [cm] b [cm] 1 1 3.08 Zoom N' strati barre N' b [cm] b [cm] 1 1 3.08 Zoom N' strati barre N' b [cm] b [cm] 1 1 3.08 Zoom N' strati barre N' b [cm] b [cm] 1 1 3.08 Zoom N' strati barre N' b [cm] b [cm] 1 1 3.08 Zoom N' strati barre N' b [cm] b [cm] 1 1 3.08 Zoom N' strati barre N' b [cm] b [cm] 1 1 3.08 Zoom N' strati barre N' b [cm] b [cm] 1 1 3.08 Zoom N' strati barre N' b [cm] b [cm] 1 1 3.08 Zoom N' strati barre N' b [cm] 1 3.08 Zoom N' s	Med, SLU Ned, SLU MRd Med, SLU / MRd	= = = = = = = = = = = = = = = = = = =	0,00 -30,66 \$\psi\$ 0,21 \$\psi\$ 4,73	[kN] [kNm] [-] [-] Solaio tipo C o	< 1,00 > 1,00 > 0 - L=5,50 m: AF	VERIF	M-NRd

A.3 - 15.1.2. Solaio di copertura tipo E - L=6,90 m

Per tale tipologia di solai, si prevede l'impiego di travetti di larghezza variabile, pari a 20 cm nelle zone degli appoggi, per un tratto di 60 cm, e travetti di larghezza 13 cm nella rimanente zona e altezza 28 cm.

COPERTURA

Altezza totale solaio: 40 Trasmittanza termica: U = 0.15 W/m²K

Altezza solo travetto; 28 Luce di calcolo: 6.699 ml

Spessore soletta: 5 cm Fabbisogno di Ferro d'armatura: 10.67 Kg/m²

Spessore soletta: 5 cm Fabbisogno di Ferro d'armatura: 10.67 Kg/m²

Valore del Manuelto di le cario (VO): 50200 000

Spessore d'isolamento del sotto travetto: 7 cm

Valore del Momento di Inerzia (IXO): 69180.00 cm⁴

Interasse travetti: 60 cm

Fabbisogno di Calcestruzzo per il getto in opera: 0.109 mc/m²

Peso Proprio del Solaio finito: 280.00 kg/m²

Resistenza Termica: R = 6.63 m²K/W

Rompitratta provvisori: interasse massimo 1.50 ml

Fabbicogno di mano d'opera: 0.20 operm² (vedi applisi

Fabbisogno di mano d'opera: 0.20 ore/m² (vedi analisi

economica)

Per il calcolo precedentemente eseguito puoi richiedere inoltre:

Travetto

Con una larghezza alla base di cm 13 la nervatura consente l'impiego di tralicci reticolari standard o armatura tradizionale, fino a 3 barre nel rispetto dell'interferro minimo prescritto dalle norme.

Il carico complessivo agente in condizioni SLU, agente su un travetto, comprensivo dei coefficienti parziali di sicurezza e pari a:

CODICE CARICO	LIVELLO	TIPO	permanenti strutturali G ₁ [kN/m ²]	permanenti non strutturali G ₂ [kN/m ²]	Accidentali Q ₁	Accidentali Q ₂ [kN/m ²]	Eccezionali A _d
C6	Copertura	Solaio tipo E	2,85	3,00	0,50	0,50	5,50

$$p = 1,3 \times 2,85 + 1,5 \times 3,00 + 1,5 \times 5,50 = 16,46$$
 kN/m^2 $p = 16,46 \times 0,60$ $m = 9,87$ kN/m

CODICE CARICO	LIVELLO	TIPO	permanenti strutturali G ₁ [kN/m ²]	permanenti non strutturali G ₂ [kN/m ²]	Accidentali Q ₁	Accidentali Q_2 [kN/m²]	Eccezionali A_d [kN/m ²]
C7		Solaio tipo F: locale tecnico zona impianti	2,85	3,00	0,50	0,00	0,00

C7
$$p = 1.3 \times 2.85 + 1.5 \times 3.00 + 1.5 \times 0.50 = 8.96 \text{ kN/m}^2$$

 $p = 8.96 \times 0.60 \text{ m} = 5.37 \text{ kN/m}^2$

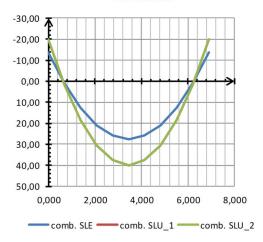
Armatura inferiore in campata: $2 \phi 20$ / travetto Armatura inferiore agli appoggi: $2 \phi 20$ / travetto Armatura superiore agli appoggi: $2 \phi 20$ / travetto

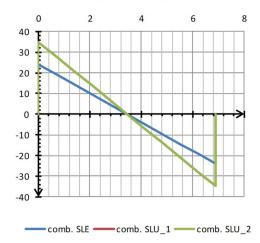
Larghezza travetto in campata: 13 cm Larghezza travetto agli appoggi: 20 cm

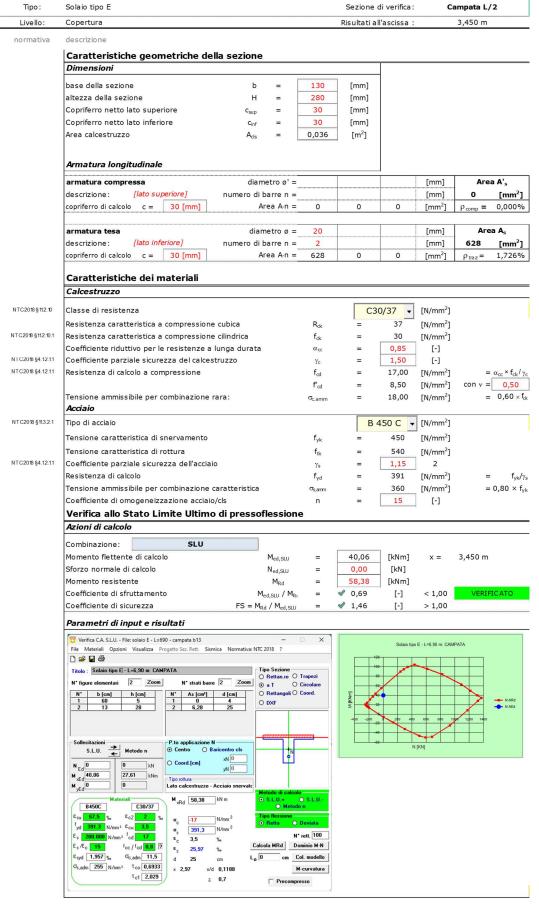
Oggetto	Ecoguart	iere Ponticelli						
Codice carico	C6	icre i ondicem						
Livello	Copertura							
Tipo	Solaio tipo	/ E					Revisione:	0
Vers. 1.00.00			iSAB\CNAP005N	Napoli Ponticel	li\[E1C_solaio E			1.00.00.xlsm]soll
CARICHI PERMA	NENTI STR	HITTHRALL a	2,850	kN/m²				
CARICHI PERM.	NON STRU	TTURALI g _{k2} :	3,000	kN/m²	Cat.			
TOTALE CARICH	II PERMANE	NTI:	5,85	kN/m ²	Azione	Ψ0	Ψ1	Ψ2
CARICO ACCID	ENTALE q _{k1}	:	5,50	kN/m²	- ▼	0,00	0,00	0,00
CARICO ACCID	ENTALE q _{k2}	:	0,50	kN/m²	H ▼	0,00	0,00	0,00
						Ψ0	Ψ1	Ψ2
CARICO NEVE q	k3;	Neve (q. ≤ 1000 m)	0,500	kN/m²	\rightarrow	0,50	0,20	0,00
CARICO VENTO		(4. =,		kN/m ²	→	0,60	0,20	0,00
	784			KINJIII	,	5/55	0/20	5/55
CARICO CONCE	NTRATO P		0,000	kN	distanza da	estremo	0,00	m
		NENTE STRUTTURALE:	0,000	kN	=	0,00 kN/m	х	0,00 m
					=			
di cui quota Pe		NON STRUTTURALE:	0,000	kN		0,00 kN/m	X	0,00 m
	ai cui	quota ACCIDENTALE:	0,000	kN	=	0,00 kN/m	X	0,00 m
Carico orizzonta	le H _k		0,000	kN/m				
Altezza di applica	azione		0,000	m				
Lunghezza di inf	luenza		0,000	m				
Momento fletteni	te M ₁		0,000	kN/m*m	distanza da	a estremo	0,00	m
CALCOLO CARIC	HI APPLIC	ATI						
ZONA INFLUENZ	A PERMANI	ENTI STRUTTURALI	0,600	m				
ZONA INFLUENZ	A ALTRI C	ARICHI	0,600	m				
			70 (0.000)			i		1
CARICHI PERMA		UTTURALI g ₁ :	2,850	X	0,600	=	1,710	kN/m
PESO PROPRIO	TRAVE						0,000	kN/m
CARICHI PERM.	NON STRU	TTURALI g ₂ :	3,000	X	0,600	=	1,800	kN/m
CARICO TOTALE	PERMANE	NTI:					3,510	kN/m
Altri permanenti	non struttı	ırali:					0,000	kN/m
						Azione	Attiva	
						principale	azione	Ψ ₀
CARICO ACCID	ENTALE	q ₁ :	5,50x0,60=	3,300	kN/m	•	✓	
CARICO ACCID	ENTALE	q ₂ :	0,50x0,60=	0,300	kN/m	0		5,00
CARICO NEVE		q ₃ :	0,50x0,60=	0,300	kN/m	0		0,50
						0		0,50
Luca di calcala			6 000	[m]		Coeff. Com	hinaziono	
Luce di calcolo			6,900	[m]		SLE	SLU_1	SLU_2
Combinazione S	I F	rara			~ -	1,00	1,30	1,30
COMBINGZIONE S		Turu			$\gamma_{g1} = \gamma_{g2} = \gamma_{g2}$	1,00	1,50	1,50
					$\gamma_{Q} =$	1,00	1,50	1,50
					10	,		
			SLI	E	SL	.U_1	SLI	J_2
CARICHI DISTR	RIBUITI		Ψ*γsle	q [kN/m]	ψ*γslu	q [kN/m]	ψ*γsιυ	q [kN/m]
CARICHI PERMA	NENTI STR	UTTURALI g ₁ :	1,00	1,71	1,30	2,22	1,30	2,22
CARICHI PERM.	NON STRU	TTURALI g ₂ :	1,00	1,80	1,50	2,70	1,50	2,70
CARICO ACCID	ENTALE q ₁ :		1,00	3,30	1,50	4,95	1,50	4,95
CARICIO ACCIDA	LNTALL to		0,00	Chyclica	18,0803	0,00	13,00	(B, ERC)
CARICO NEVE q	3:		0,50	0,15	0,75	0,23	0,75	0,23
			(C)(, 1570)(TEXT FIRM	DUTTER		

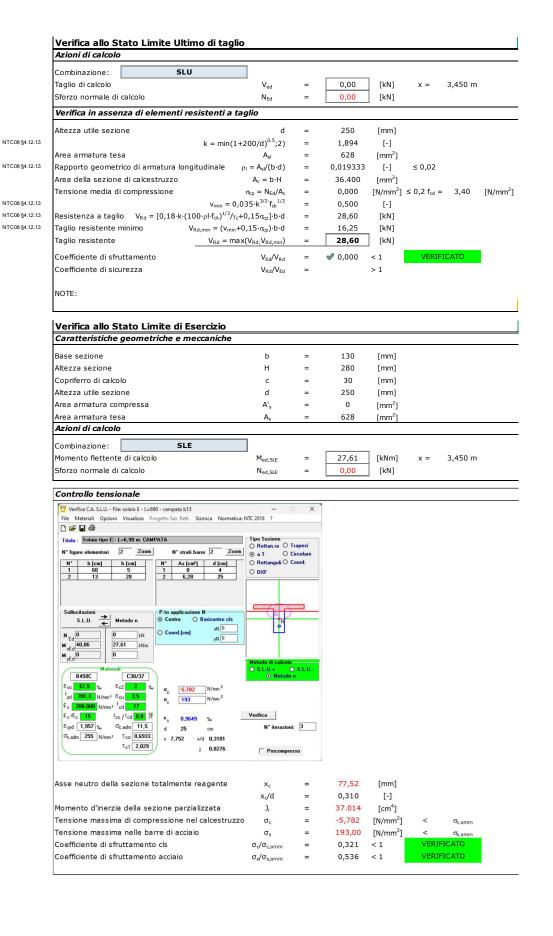
Carico Totale lineare

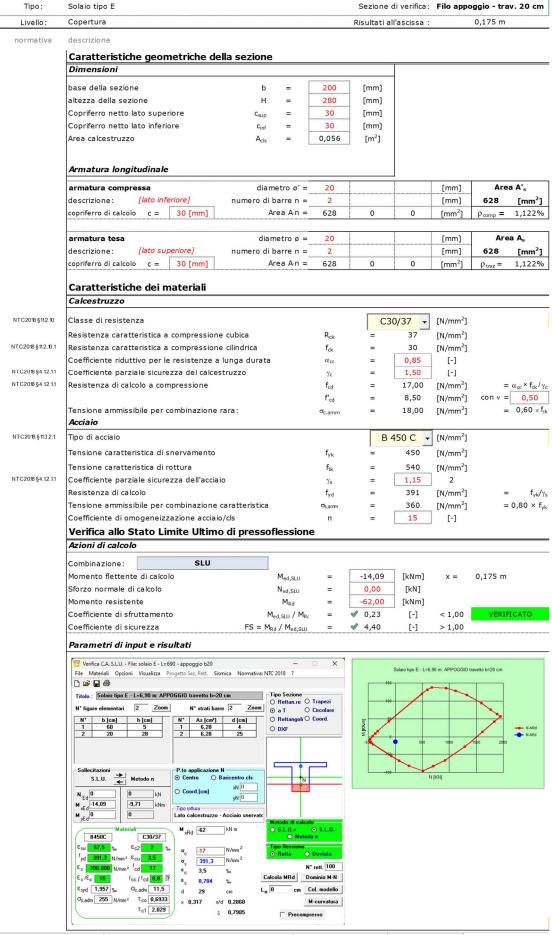
6,96

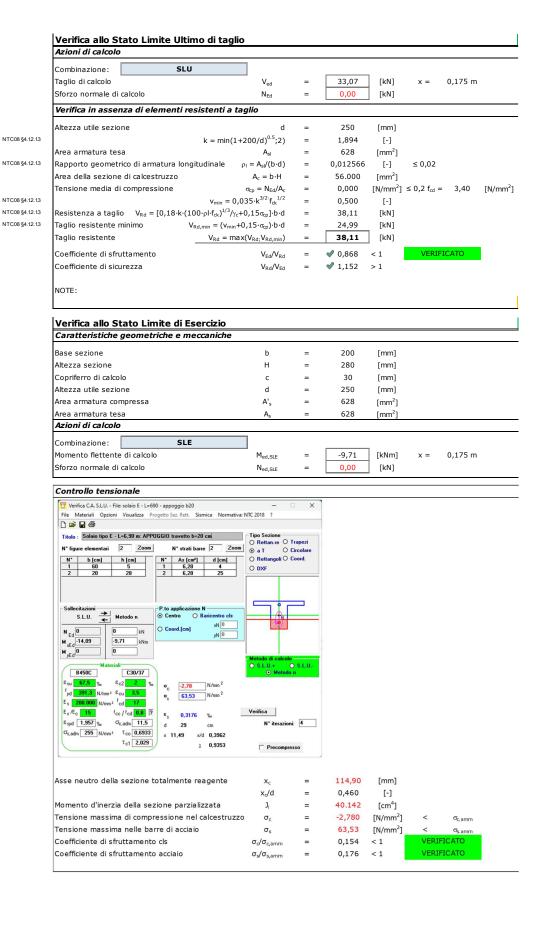

10,10

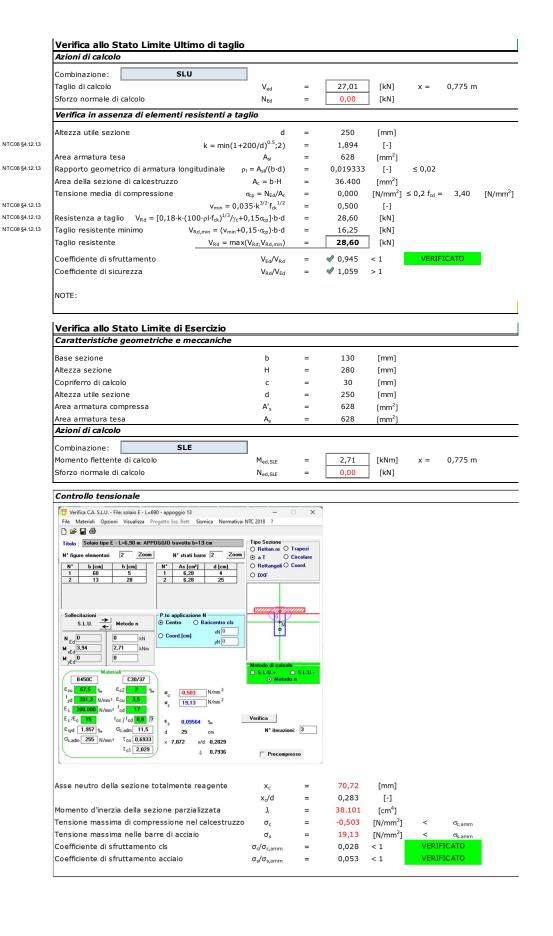

MOMENTO FLETTENTE									
Descrizione ASCISSA COND. DI CARICO									
	x [m]	SLE	SLU_2						
Asse trave	0,000	-13,81 kNm	-20,03 kNm	-20,03 kNm					
Campata L/2	3,450	27,61 kNm	40,06 kNm	40,06 kNm					
Filo appoggio - trav. 20 cm	0,175	-9,71 kNm	-14,09 kNm	-14,09 kNm					
zona travetti 13 cm	0,775	2,71 kNm	3,94 kNm	3,94 kNm					
zona travetti 13 cm	1,775	17,85 kNm	25,90 kNm	25,90 kNm					


TAGLIO	х	=	0,00	m			
COND. DI CA	SLE		S	SLU_1		.U_2	
CARICHI PERMANENTI		12,11	kN	16,98	kN	16,98	kN
CARICHI ACCIDENTALI		11,90	kN	17,85	kN	17,85	kN
	CARICHI TOTALI	24,01	kN	34,84	kN	34,84	kN
Risultati all'ascissa x(m) =	0,175	22,79	kN	33,07	kN	33,07	kN
Risultati all'ascissa x(m) =	0,775	18,62	kN	27,01	kN	27,01	kN
Risultati all'ascissa x(m) =	1,775	11,66	kN	16,91	kN	16,91	kN
Risultati all'ascissa x(m) =	3,450	0,00	kN	0,00	kN	0,00	kN


CALCOLO FRECCIA AMMISSI	BILE ALLO SLE	sche	ma statico:	trave :	semi-incast	rata agli e	stremi
✓ Freccia calcolata		SI					
MODULO ELASTICO MATERIALE E:		32.837	N/mm ²	***************************************	f =	3	q L ⁴
MOMENTO D'INERZIA J _y :		37.014	cm⁴	*******	1 -	384	EJ
Freccia ammissibile CARICO ACCIDENTALE		L/300	=	23,00 mm	q =	6,96	kN/m
Freccia ammissibile CARICO	TOTALE	L/250	=	27,60 mm	L =	6,90	m
Controfreccia iniziale	f _c	0,00	mm				
Freccia carico accidentale	f _{acc}	5,03	mm	<	23,00	mm	Verificato
Freccia carico totale	f _{tot}	0 10,14	mm	<	27,60	mm	Verificato
Freccia totale netta	$f_{max} = f_{tot} - f_{c}$	0 10,14	mm	<	27,60	mm	Verificato


DIAGRAMMA MOMENTO FLETTENTE





Tipo:

Solaio tipo E

Tipo:	Solaio tipo E		Sezione di verifica	: zona	travetti 13 cm	
Livello:	Copertura		Risultati all'ascissa	: 0,775 m		
normativa	descrizione					
	Caratteristiche geometriche della sezione					
	Dimensioni					
	base della sezione b =	130	[mm]			
	altezza della sezione H =	280	[mm]			
	Copriferro netto lato superiore $c_{sup} =$	30	[mm]			
	Copriferro netto lato inferiore $q_{inf} = q_{inf}$	30	[mm]			
	Area calcestruzzo A _{cls} =	0,036	[m²]			
		,				
	Armatura longitudinale					
	armatura compressa diametro ø'	= 20		[mm]	Area A's	
	descrizione: [lato superiore] numero di barre n	= 2		[mm]	628 [mm ²]	
	copriferro di calcolo c = 30 [mm] Area A·n	= 628	0 0	[mm ²]	$\rho_{comp} = 1,726\%$	
				Ť		
	armatura tesa diametro ø			[mm]	Area A _s	
	descrizione: [lato inferiore] numero di barre n	***************************************		[mm]	628 [mm²]	
	copriferro di calcolo c = 30 [mm] Area A·n	= 628	0 0	[mm ²]	$\rho_{\text{traz}} = 1,726\%$	
	Caratteristiche dei materiali					
	Calcestruzzo					
NTC2018 § 11.2.10	Classe di resistenza		C30/37 •	[N/mm ²]		
	Resistenza caratteristica a compressione cubica	R_{dk}	= 37	[N/mm ²]		
NTC2018 §112.10.1	Resistenza caratteristica a compressione cilindrica	f_{ck}	= 30	[N/mm ²]		
	Coefficiente riduttivo per le resistenze a lunga durata	α_{cc}	= 0,85	[-]		
NTC2018 §4.12.11	Coefficiente parziale sicurezza del calcestruzzo	γc	= 1,50	[-]		
NTC2018 §4.12.11	Resistenza di calcolo a compressione	f_{cd}	= 17,00	[N/mm ²]	$= \alpha_{cc} \times f_{ck} / \gamma_{c}$	
		f'cd	= 8,50	[N/mm ²]	con v = 0,50	
	Tensione ammissibile per combinazione rara: **Acciaio** **Acciaio**	$\sigma_{c.amm}$	= 18,00	[N/mm ²]	$= 0,60 \times f_{ck}$	
NT C2018 §11.3.2.1	Tipo di acciaio		B 450 C	[N/mm ²]		
	Tensione caratteristica di snervamento	f_{yk}	= 450	[N/mm ²]		
	Tensione caratteristica di rottura	f _{tk}	= 540	[N/mm ²]		
NTC2018 §4.12.11	Coefficiente parziale sicurezza dell'acciaio	'tk γs	= 1,15	2		
•	Resistenza di calcolo	f _{vd}	= 391	[N/mm ²]	$=$ f_{vk}/γ_s	
	Tensione ammissibile per combinazione caratteristica	-yu σ _{s,amm}	= 360	[N/mm ²]	$= 0.80 \times f_{vk}$	
	Coefficiente di omogeneizzazione acciaio/cls	n	= 15	[-]	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Verifica allo Stato Limite Ultimo di pressoflessio	ne				
	Azioni di calcolo					
	Combinazione: SLU					
	Momento flettente di calcolo M _{ed,SLU}	=	3,94 [kNm]	x =	0.775 m	
	Sforzo normale di calcolo N _{ed,SLU}	=	0,00 [kN]		-,	
	Momento resistente M _{Rd}	=	88,51 [kNm]			
	Coefficiente di sfruttamento M _{ed,SLU} / M	I _R =	√ 0,04 [-]	< 1,00	VERIFICATO	
	Coefficiente di sicurezza $FS = M_{Rd} / M_{ed,Sl}$		√ 22,49 [-]	> 1,00		
	Parametri di input e risultati					
	To Verifica C.A. S.L.U File: solaio E - L=690 - appoggio 13 —	- ×	Solaio tipo E - L:	=6,90 m: APPOGGIO	travetto b=13 cm	
	File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2018 ?		150			
	Titolo : Solaio tipo E - L=6,90 m: APPOGGIO travetto b=13 cm Tipo Sezione O Rettan.re	O T	100			
	N° figure elementari 2 Zoom N° strati barre 2 Zoom ⊙ a T	O Circolare	"		\	
	N* b [cm] h [cm] N* As [cm²] d [cm] O Rettangoli 1 6.28 4 O DYF	O Coord.	W KNM)		M-NRd	
	1 60 5 2 13 28 1 6,28 4 2 6,28 25		N. S.	_/	1500 2000	
					1500 2000	
	Scillecitazioni S.L.U. — Metodo n — P.to applicazione N — O Centro O Baricentro cls		100	N [KN]		
	O Coord (cm)		1			
	N Ed 0 0 kN					
	M yEd 0	rolo				
	Materiali M. p.d 59,03 kN m O S.L.U.+	O S.L.U				
	8450C C30/37 Meb	odo n				
	f., 201 2 Name 2 5 2 5 C -17 N/mm • Retta	O Deviata				
	E _{\$} 200.000 N/mm² ^f cd 17 ε _C 3,5 ‰	N* rett. 100				
	Ε ₂ /Ε _C 15 cc/fcd 0.8 ? ε ₂ 20.9 % Calcola MHd	Dominio M-N				
	G . 355 T 0.0000	Col. modello				
	Tot 2 029	M-curvatura				
	§ U,7 Precon	ihte220			1	

A.3 - 15.1.3. Solaio di copertura tipo E - L=5,50 m

Per tale tipologia di solai, si prevede l'impiego di travetti di larghezza 13 cm e altezza 28 cm.

COPERTURA

Altezza totale solaio: 40 Trasmittanza termica: U = 0.15 W/m2K

Altezza solo travetto: 28 Luce di calcolo: 6.699 ml

Fabbisogno di Ferro d'armatura: 10.67 Kg/m² Spessore d'isolamento del sotto travetto: 7 cm Valore del Momento di Inerzia (JXO): 69180.00 cm4

Interasse travetti: 60 cm Fabbisogno di Calcestruzzo per il getto in opera: 0.109 mc/m²

Peso Proprio del Solaio finito: 280.00 kg/m² Sovraccarico totale oltre il peso proprio del solaio: 900 Kg Resistenza Termica: R = 6.63 m2K/W Rompitratta provvisori: interasse massimo 1.50 ml

Fabbisogno di mano d'opera: 0.20 ore/m² (vedi analisi

economica)

Per il calcolo precedentemente eseguito puoi richiedere inoltre:

Travetto

Spessore soletta: 5 cm

Con una larghezza alla base di cm 13 la nervatura consente l'impiego di tralicci reticolari standard o armatura tradizionale, fino a 3 barre nel rispetto dell'interferro minimo prescritto dalle norme.

Il carico complessivo agente in condizioni SLU, agente su un travetto, comprensivo dei coefficienti parziali di sicurezza e pari a:

CODICE CARICO	LIVELLO	TIPO	permanenti strutturali G ₁ [kN/m ²]	permanenti non strutturali G_2 $[kN/m^2]$	Accidentali Q ₁	Accidentali Q ₂ [kN/m ²]	Eccezionali A_d [kN/m ²]	
C6	Copertura	Solaio tipo E	2,85	3,00	0,50	0,50	5,50	

$$p = 1,3 \times 2,85 + 1,5 \times 3,00 + 1,5 \times 5,50 = 16,46$$
 kN/m^2 $p = 16,46 \times 0,60$ $m = 9,87$ kN/m

CODICE CARICO	LIVELLO	TIPO	permanenti strutturali G ₁ [kN/m ²]	permanenti non strutturali G ₂ [kN/m ²]	Accidentali Q ₁	Accidentali Q ₂ [kN/m ²]	Eccezionali $A_d \\ [kN/m^2]$
C7		Solaio tipo F: locale tecnico zona impianti	2,85	3,00	0,50	0,00	0,00

C7
$$p = 1.3 \times 2.85 + 1.5 \times 3.00 + 1.5 \times 0.50 = 8.96$$
 kN/m^2 $p = 8.96 \times 0.60$ $m = 5.37$ kN/m

Armatura inferiore in campata: 2 φ 16 / travetto Armatura inferiore agli appoggi: 2 φ 16 / travetto Armatura superiore agli appoggi: 2 φ 20 / travetto

Larghezza travetto in campata: 13 cm Larghezza travetto agli appoggi: 13 cm

Oggetto	Ecoguar	tiere Ponticelli						
Codice carico	C6							
Livello	Copertura	a						
Tipo	Solaio tipo	o E					Revisione:	0
Vers. 1.00.00			iSAB\CNAP0051	Napoli Ponticel	li\[E1C_solaio E	- L=550_Verificas	olaio CA vers. 1	.00.00.xlsm]sc
				1 .				
CARICHI PERM	IANENTI STI	RUTTURALI g _{k1} :	2,850	kN/m²				
CARICHI PERM	i. NON STRU	JTTURALI g _{k2} :	3,000	kN/m²	Cat.			
TOTALE CARIC	HI PERMAN	ENTI:	5,85	kN/m²	Azione	Ψ0	¥ 1	Ψ2
CARICO ACCIDENTALE q _{k1} :			5,50	kN/m²	- ▼	0,00	0,00	0,00
CARICO ACCI	DENTALE q _k	2:	0,50	kN/m ²	H ▼	0,00	0,00	0,00
					1	-		
CARICO NEVE	uro,	Neve (q. ≤ 1000 m)	0,500	kN/m²	\rightarrow	Ψ ₀	Ψ ₁ 0,20	Ψ ₂
CARICO VENTO q _{k4} :			0,300	kN/m ²	→	0,60	0,20	0,00
	- 4141			KNYIII	,	5/00	5,25	5,55
CARICO CONC	ENTRATO P	O ₁ :	0,000	kN	distanza da	estremo	0,00	m
di cui qu	Jota PERMA	NENTE STRUTTURALE:	0,000	kN	=	0,00 kN/m	x	0,00 m
di cui quota I	PERMANENT	E NON STRUTTURALE:	0,000	kN	=	0,00 kN/m	x	0,00 m
	di cui	quota ACCIDENTALE:	0,000	kN	=	0,00 kN/m	×	0,00 m
Carico orizzont	ale H _k		0,000	kN/m				
Altezza di appli	icazione		0,000	m				
Lunghezza di ir	nfluenza		0,000	m				
Momento flette			0,000	kN/m*m	distanza da	estremo	0,00	m
CALCOLO CARI	CHI APPLI	CATI						
ZONA INCLUEN	ZA DEDMAN	ENITI CTDIITTIIDALI	0,600	l m				
ZONA INFLUEN		ARICHI	0,600	m m				
					0.600		1 710	I/NI/m
PESO PROPRIO		ROTTORALI g ₁ :	2,850	Х	0,600	=	1,710 0,000	kN/m kN/m
CARICHI PERM		JTTURALI a _s :	3,000	X	0,600	=	1,800	kN/m
CARICO TOTAL							3,510	kN/m
Altri permanen							0,000	kN/m
						Azione	Attiva	
						principale	azione	Ψ0
CARICO ACCI	DENTALE	q ₁ :	5,50x0,60=	3,300	kN/m	•	~	
CARICO ACCI	DENTALE	q ₂ :	0,50x0,60=	0,300	kN/m	0		6,00
CARICO NEVE		q ₃ :	0,50x0,60=	0,300	kN/m	0		0,50
SIMPLE SOLVE IN IS	X	1 m	0,000,0,00	Cr. Ch. R. R	eny n	0		0,60
Luce di calcolo			5,500	[m]		Coeff. Con	nbinazione	
						SLE	SLU_1	SLU_2
Combinazione	SLE	rara			$\gamma_{g1} =$	1,00	1,30	1,30
					$\gamma_{g2} =$	1,00	1,50	1,50
					$\gamma_Q =$	1,00	1,50	1,50
			SL	E	SL	U_1	SLU	J_2
CARICHI DIST	RIBUITI		Ψ*γsle	q [kN/m]	Ψ*γslu	q [kN/m]	Ψ*γsιυ	q [kN/m]
CARICHI PERM	IANENTI ST	RUTTURALI g ₁ :	1,00	1,71	1,30	2,22	1,30	2,22
CARICHI PERM	I. NON STRI	JTTURALI g ₂ :	1,00	1,80	1,50	2,70	1,50	2,70
CARICO ACCI	DENTALE q ₁	:	1,00	3,30	1,50	4,95	1,50	4,95
CARICO NEVE	a.		0.50	0.15	0.75	0.33	0.75	0.22
CARICO NEVE	Ч 3і		0,50	0,15	0,75	0,23	0,75	0,23

Carico Totale lineare

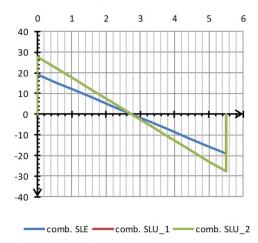
6,96

10,10

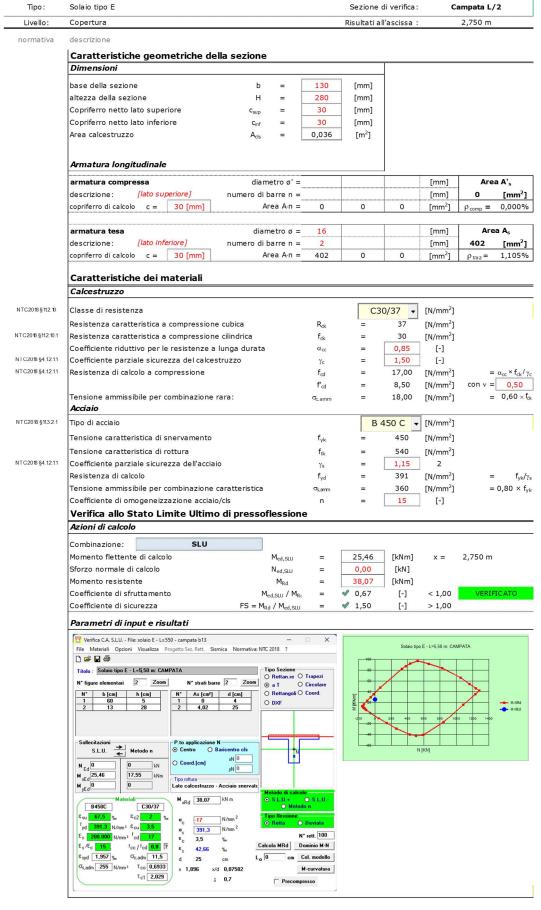
CALCOLO SOLLECITAZIONI

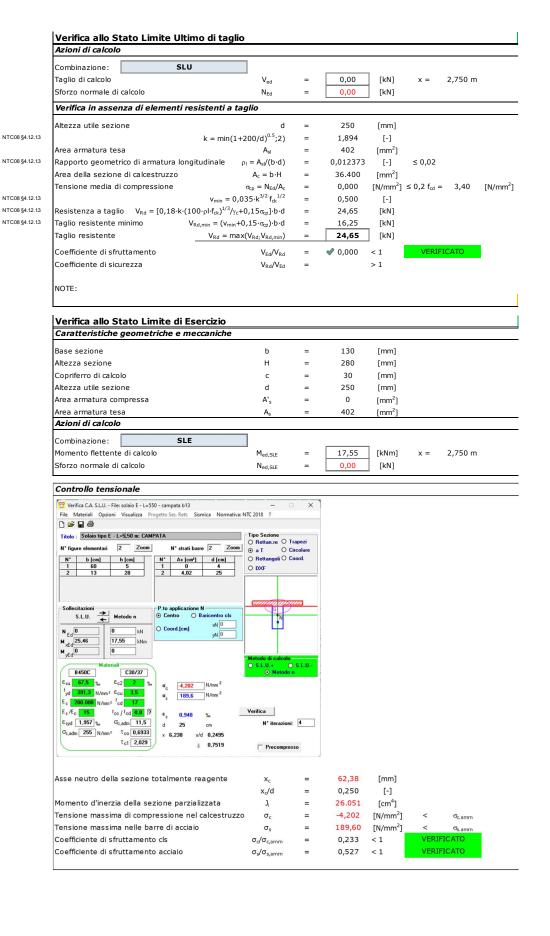
Grado di vincolo 0,50 → 0 = trave doppio appoggio; 1 = trave doppio incastro

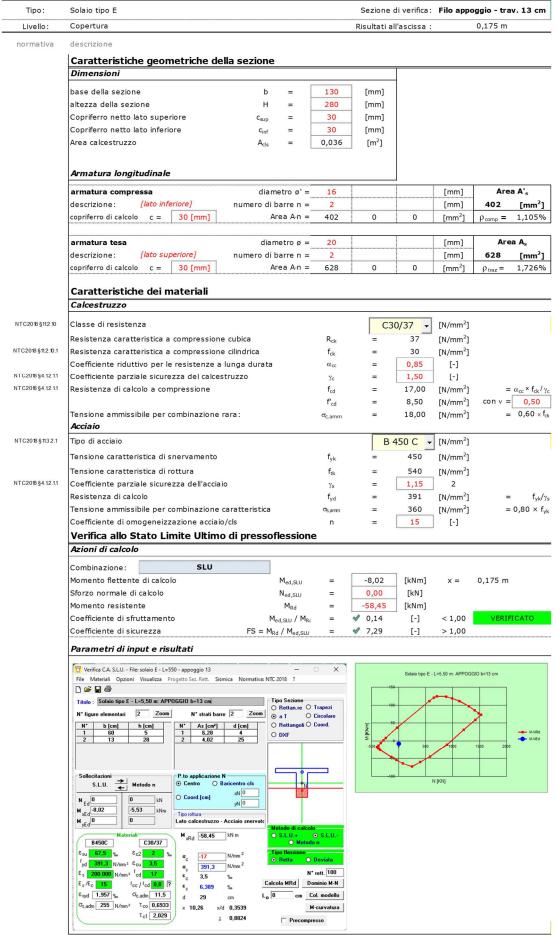
MOMENTO FLETTENTE							
Descrizione	ASCISSA	COND. DI CARICO					
	x [m]	SLE	SLU_1	SLU_2			
Asse trave	0,000	-8,77 kNm	-12,73 kNm	-12,73 kNm			
Campata L/2	2,750	17,55 kNm	25,46 kNm	25,46 kNm			
Filo appoggio - trav. 13 cm	0,175	-5,53 kNm	-8,02 kNm	-8,02 kNm			
zona travetti 13 cm	0,775	3,97 kNm	5,76 kNm	5,76 kNm			
zona travetti 13 cm	1,775	14,24 kNm	20,66 kNm	20,66 kNm			

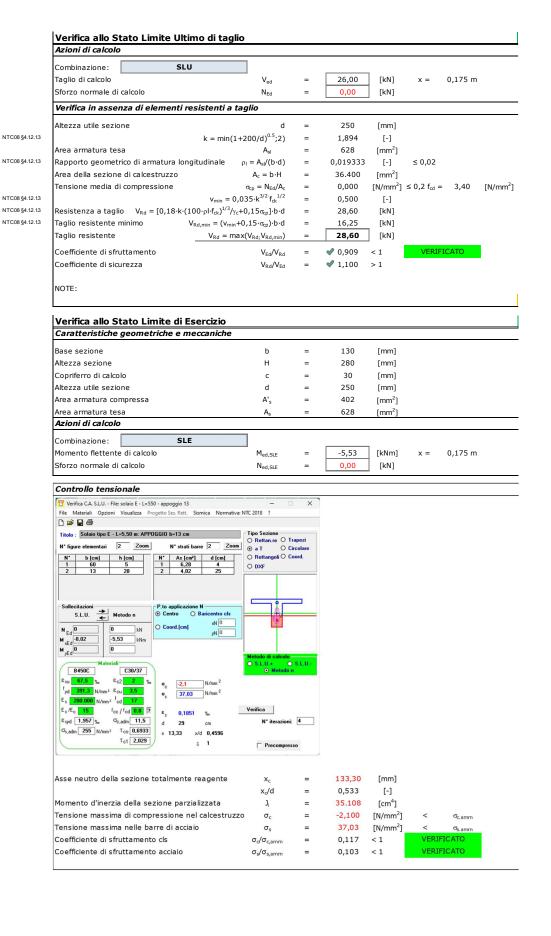

TAGLIO	х	=	0,00	m			
COND. DI CA	ARICO	S	SLE	S	LU_1	SL	.U_2
CARICHI PERMANENTI		9,65	kN	13,54	kN	13,54	kN
CARICHI ACCIDENTALI		9,49	kN	14,23	kN	14,23	kN
	CARICHI TOTALI	19,14	kN	27,77	kN	27,77	kN
Risultati all'ascissa x(m) =	0,175	17,92	kN	26,00	kN	26,00	kN
Risultati all'ascissa x(m) =	0,775	13,75	kN	19,94	kN	19,94	kN
Risultati all'ascissa x(m) =	1,775	6,79	kN	9,85	kN	9,85	kN
Risultati all'ascissa $x(m) =$	2,750	0,00	kN	0,00	kN	0,00	kN

CALCOLO FRECCIA AMMISSIBILE ALLO SLE			sche	ma statico:	trave semi-incastrata agli estremi			
✓ Freccia calcolata			SI					
MODULO ELASTICO MATERIA	ALE E:		32.837	N/mm ²	***************************************	f =	3	q L⁴
MOMENTO D'INERZIA J _y :	MOMENTO D'INERZIA J _y :		26.051	cm⁴	*****	r =	384	EJ
Freccia ammissibile CARICO	Freccia ammissibile CARICO ACCIDENTALE		L/300	=	18,33 mm	q =	6,96	kN/m
Freccia ammissibile CARICO	TOTALE		L/250	=	22,00 mm	L =	5,50	m
Controfreccia iniziale	f _c		0,00	mm	****			
Freccia carico accidentale	f_{acc}	0	2,88	mm	<	18,33	mm	Verificato
Freccia carico totale	f _{tot}	0	5,82	mm	<	22,00	mm	Verificato
Freccia totale netta	$f_{max} = f_{tot} - f_c$	0	5,82	mm	<	22,00	mm	Verificato


DIAGRAMMA MOMENTO FLETTENTE


-15,00 -10,00 -5,00 0,00 5,00 10,00 20,00 20,00 0,000 1,000 2,000 3,000 4,000 5,000 6,000 — comb. SLE — comb. SLU_1 — comb. SLU_2


DIAGRAMMA TAGLIO



Verifiche a flessione e taglio

A.3 - 16. Verifica balconi

Si riportano di seguito le verifiche delle solette dei balconi in elevazione per l'edificio in oggetto.

I balconi sono realizzati con solette in c.a. di spessore 20 cm, a sbalzo dalle travi perimetrali dell'edificio. In corrispondenza dei lati, le solette presentano un ringrosso di sezione, pari a 15 cm per il contenimento del pacchetto di finitura e l'attacco dei parapetti.

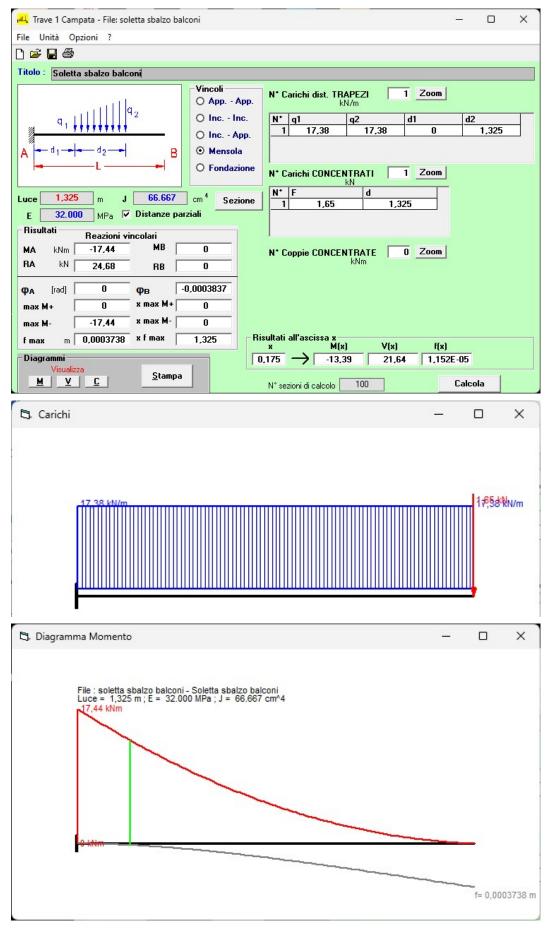
Le verifiche di resistenza si eseguono in combinazione statica SLU e considerando una striscia di soletta di larghezza unitaria e la luce massima di calcolo.

Le verifiche statiche vengono eseguite con il metodo agli stati limite, secondo l'attuale normativa (NTC2018), applicando, per le azioni di calcolo, la Combinazione Fondamentale per gli Stati Limite Ultimi (SLU), di cui al §2.5.3 delle NTC2018.

Lo schema statico utilizzato è di mensola incastrata alla trave di bordo; la luce di calcolo è assunta in asse trave di bordo.

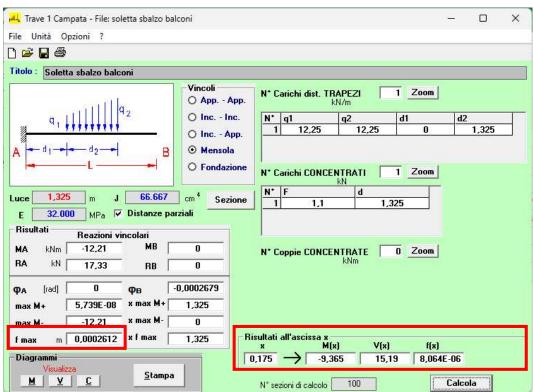
Si riportano di seguito le verifiche eseguite.

Armatura inferiore: $1 \phi 12 / 20 \text{ cm}$ Armatura superiore: $1 \phi 12 / 20 \text{ cm}$

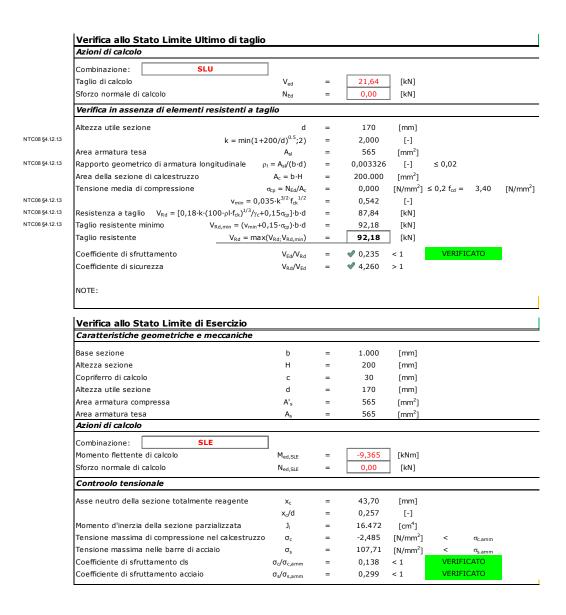

Larghezza soletta: 100 cm Spessore soletta: 20 cm

Calcolo sollecitazioni allo SLU

Oggetto: Ecoquartiere Ponticelli						
Descrizione: Soletta a sbalzo balconi Vers. 2.50.01					Revisione:	0
Vers. 2.50.01			Cat. Azione	С		
CARICHI PERMANENTI STRUTTURALI g _{k1} :	5,000	kN/m²		Ambie	nti suscetti	bili di
CARICHI PERM. NON STRUTTURALI g _{k2} :	3,250	kN/m²		a	ffollamento)
TOTALE CARICHI PERMANENTI:	8,25	kN/m²	-	Ψ0	Ψ1	Ψ2
CARICO ACCIDENTALE q _{k1} :	4,000	kN/m²	\rightarrow	0,70	0,70	0,60
TOTALE:	12,250	kN/m²				,
		_		Ψ0	Ψ1	Ψ2
CARICO NEVE q _{k2} :	0,000	kN/m ²	\rightarrow	0,50	0,20	0,00
CARICO VENTO q _{k3} :	0,000	kN/m²	\rightarrow	0,60	0,20	0,00
,		_				
CARICO CONCENTRATO P ₁ :	1,100	kN	distanza d	a estremo	1,325	m
di cui quota PERMANENTE STRUTTURALE:	0,000	kN	=	0,00 kN/m	X	0,00 m
di cui quota PERMANENTE NON STRUTTURALE:	1,100	kN	=	1,10 kN/m	x	1,00 m
di cui quota ACCIDENTALE:	0,000	kN	=	0,00 kN/m	х	0,00 m
Carico orizzontale H _k	0,000	kN/m				
Altezza di applicazione	0,000	m				
Lunghezza di influenza	0,000	m				
Momento flettente M ₁	0,000	+	distanza d	a estremo	0,00	m
CALCOLO CARICHI A ml						
ZONA INFLUENZA PERMANENTI STRUTTURALI	1,000	m				
ZONA INFLUENZA ALTRI CARICHI	1,000	m				
CARICHI PERMANENTI STRUTTURALI g ₁ :	5,000	kN/m				
PESO PROPRIO TRAVE	0,000	kN/m				
CARICHI PERM. NON STRUTTURALI g ₂ :	3,250	kN/m				
CARICO TOTALE PERMANENTI:	8,250	kN/m	-			
Altri permanenti non strutturali:	0,000	kN/m				
		_	А	zione principa	ale	
CARICO ACCIDENTALE q ₁ :	4,000	kN/m	•			
CARICO NEVE q ₂ :	0,000	kN/m	Ο ψ	, =	0,50	
CARICO VENTO q ₃ :	0,000	kN/m	Ο ψ) =	0,60	
CALCOLO SOLLECITAZIONI						
Luce di calcolo	1,325	[m]		Coeff. Com	nbinazione	
				SLE	SLU_1	SLU_2
Combinazione SLE rara			$\gamma_{g1} =$	1,00	1,30	1,30
			$\gamma_{g2} =$		1,50	1,50
			$\gamma_Q =$	1,00	1,50	1,50
	S	LE	S	LU_1	SL	U_2
CARICHI DISTRIBUITI	ψ*γ	q [kN/m]	ψ*γ	q [kN/m]	ψ*γ	q [kN/m
CARICHI PERMANENTI STRUTTURALI g ₁ :	1,00	5,00	1,30	6,50	1,30	6,50
CARICHI PERM. NON STRUTTURALI g ₂ :	1,00	3,25	1,50	4,88	1,50	4,88
CARICO ACCIDENTALE a.:	1.00	4.00	1.50	6.00	1.50	6.00


	9	SLE	S	LU_1	SI	_U_2
CARICHI DISTRIBUITI	ψ*γ	q [kN/m]	ψ*γ	q [kN/m]	ψ*γ	q [kN/m]
CARICHI PERMANENTI STRUTTURALI g ₁ :	1,00	5,00	1,30	6,50	1,30	6,50
CARICHI PERM. NON STRUTTURALI g ₂ :	1,00	3,25	1,50	4,88	1,50	4,88
CARICO ACCIDENTALE q ₁ :	1,00	4,00	1,50	6,00	1,50	6,00
CARICO NEVE q ₂ :	0,50	0,00	0,75	0,00	0,75	0,00
CARICO VENTO q3:	0,60	0,00	0,90	0,00	0,90	0,00
Carico Totale lineare		12,25		17,38		17,38

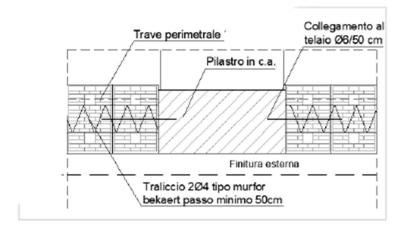
	S	LE	SI	_U_1	SL	.U_2
CARICO CONCENTRATO	ψ*γ	$P_1[kN]$	ψ*γ	P ₁ [kN]	ψ*γ	$P_1[kN]$
CARICO PERMANENTE STRUTTURALE:	1,00	0,00	1,30	0,00	1,30	0,00
CARICO PERM. NON STRUTTURALE:	1,00	1,10	1,50	1,65	1,50	1,65
CARICO ACCIDENTALE:	1,00	0,00	1,50	0,00	1,50	0,00
Carico Totale concentrato		1,10		1,65		1,65




```
NOME FILE: soletta sbalzo balconi
Titolo: Soletta sbalzo balconi
----- DATI : -----
                 J (cm^4)
E (MPa)
                                       Luce (m)
                                      1,325
32.000
                   66.667
Vincoli: Mensola
Carichi distribuiti trapezi (kN/m)
Ν°
              q1
17,38
                             q2
17,38
                                                          d2
                                            d1
                                                           1,325
1
                                            0
Carichi concentrati (kN)
Ν°
              F
              1,65
1
Risultati
MA = -17,44 \text{ (kNm)}
                             MB = 0 (kNm)
RA = 24,68 \text{ (kN)}
                             RB = 0 (kN)
                             Rotaz. B = -0,0003837 (rad)
x max M+ = 0 (m)
Rotaz. A = 0 (rad)
\max M+ = 0 \text{ (kNm)}
\max M = -17,44 \text{ (kNm)}
                             x max M-= 0 (m)
f \max = 0,0003738 \text{ (m)}
                             x f max = 1,325 (m)
Risultati all'ascissa x
              M(x)
                             V(x)
                                             f(x)
0,175
              -13,39
                              21,64
                                             1,152E-05
```

Calcolo sollecitazioni allo SLE

Elemento: Descrizione:	Soletta sbalzo balconi Ecoquartiere Ponticelli			Sezione d		Incas	stro filo trave	
normativa	descrizione							
	I so and so are							
	Caratteristiche geometriche della sezio	ле		T				_
	part, personal part of the stronger			1				
	base della sezione	b =	1.000	[mm]				
	altezza della sezione	H =	200	[mm]				
		sup =	25 25	[mm] [mm]				
		A _{ds} =	0,200	[m ²]				
		-03						
	Armatura longitudinale							
	Armatura iongituumaie			1				=
		diametro ø' =	12			[mm]	Area A's	
		di barre n =				[mm]	565 [mr	
	copriferro di calcolo c = 30 [mm]	Area A·n =	565	0	0	[mm²]	$\rho_{comp} = 0,28$	3%
	armatura tesa	diametro ø =	12			[mm]	Area A _s	
		di barre n =	5			[mm]	565 [mr	n²1
	copriferro di calcolo c = 30 [mm]	Area A·n =	565	0	0	[mm²]	$\rho_{\text{traz}} = 0.28$	_
								_
	Caratteristiche dei materiali							
	Calcestruzzo							
NTC2018 §112.10	Classe di resistenza			C30	/37 🔻	[N/mm ²]		
	Resistenza caratteristica a compressione cubica		R_{ck}	=	37	[N/mm ²]		
NT C2018 §112.10.1	Resistenza caratteristica a compressione cilindrica		f_{dk}	=	30	[N/mm ²]		
	Coefficiente riduttivo per le resistenze a lunga dura	ata	α_{cc}	=	0,85	[-]		
NTC2018 §4.12.1.1	Coefficiente parziale sicurezza del calcestruzzo		γc	=	1,50	[-]		
NTC2018 §4.12.1.1	Resistenza di calcolo a compressione		f _{cd}	=	17,00	[N/mm ²]	$= \alpha_{cc} \times f$	
	Tensione ammissibile per combinazione rara:		f'∝d	=	8,50 18,00	[N/mm ²]	con v = 0,5 = 0,60	
	Acciaio		σ _{c.amm}	_	10,00	[N/mm ²]	_ 0,00	→ °CK
NT C2018 §11.3.2.1	Tipo di acciaio			R4	50 C ▼	[N/mm ²]		
The common terms of the contract of the contra	Tensione caratteristica di snervamento		f.	=	450	[N/mm ²]		
	Tensione caratteristica di rottura		f _{yk} f _{tk}	=	540	[N/mm ²]		
NTC2018 §4.12.1.1	Coefficiente parziale sicurezza dell'acciaio		'tk γs	_ [1,15	2		
	Resistenza di calcolo		f _{vd}	= [391	[N/mm ²]	= 1	f_{vk}/γ_s
	Tensione ammissibile per combinazione caratterist	tica	σ _{s,amm}	=	360	[N/mm ²]	= 0,80	10.00
	Coefficiente di omogeneizzazione acciaio/cls		n	= [15	[-]		
	Verifica allo Stato Limite Ultimo di pres	soflession	e					
	Azioni di calcolo							
	Combinazione: SLU							
	Momento flettente di calcolo	M _{ed,SLU}	=	-13,39	[kNm]			
	Sforzo normale di calcolo	$N_{\text{ed,SLU}}$	=	0,00	[kN]			
	Momento resistente	M_{Rd}	=	-37,88	[kNm]	-		
	Coefficiente di sfruttamento	M _{ed,SLU} / M _R		√ 0,35	[-]	< 1,00	VERIFICATO	
	Coefficiente di sicurezza FS =	= M _{Rd} / M _{ed,SLU}	=	₹ 2,83	[-]	> 1,00		
	Parametri di input e risultati							
	Verifica C.A. S.L.U File: soletta sbalzo balconi	-	□ ×			eletta sbalzo balconi		
	File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normatio	iva: NTC 2018 ?			50	Junizo dalconi		
	Titolo : Soletta sbalzo balconi	Tipo Sezione		100		_		
	N* strati barre 2 Zoo	⊙ Rettan.re (O Trapezi O Circolare					
	N* b [cm] h [cm] N* As [cm²] d [cm] 1 100 20 1 5.65 2.5	O Rettangoli		[w]			A	NO.
	1 100 20 1 5,65 2,5 2 5,65 17,5	O DXF		<u>≥</u> 500	500 1000 150	2000 2500 3	00 350 4000 - M-I	
				- 50				
				-100				
	S.L.U. Metodo n P.to applicazione N Centro Baricentro cls			-150	,	I [KN]		
	N Ed 0 0 kN Coord.[cm] xN 0 yN 0							
	M xEd -13,39 -9,365 kNm Tipo rottura	-						
	M _{yEd} 0 Lato calcestruzzo - Acciaio snerva	- Metodo di calc						
	Materiali M xRd -37,88 kN m	S.L.U.+ Meto						
	ε _{su} 67,5 ‰ ε _{c2} 2 ‰ σ 17 N/mm²	- Tipo flessione) Deviata					
	yd 391,3 N/mm² ε _{cu} 3,5 σ _s 391,3 N/mm²		N* rett. 100					
	E _s /ε _c 15 c _c / c _d 0.8 7 ε _c 3.5 %		Dominio M-N					
	ε _{syd} 1,957 ‰ σ _{c,adm} 11,5 d 17,5 cm		Col. modello					
	G _{s,adm} 255 N/mm ² T _{co} 0.6933 × 2,119 ×/d 0,1211		M-curvatura					
	τ _{c1} 2.029 \$ 0,7	Precom	presso					1
	*							



A.3 - 17. Verifiche ancoraggio delle tamponature alle strutture principali

Le tamponature sono realizzate con blocchi in laterizio adeguatamente vincolate alla struttura portante dell'edificio.

I collassi fragili e prematuri e la possibile espulsione sotto l'azione della F_a delle tamponature, si puo ritenere conseguita con l'inserimento di elementi di armatura orizzontale nei letti di malta, a distanza non superiore a 500 mm collegate alle strutture circostanti.

Di seguito si riporta il particolare tipologico della tamponatura con l'inserimento, nei letti di malta dei due paramenti, di un traliccio tipo Murfor Bekaert e di un ferro di collegamento ø6 ogni due forati.

A.3 - 18. Verifica edificio: E1_C

Nei successivi paragrafi sonoriportati i principali risultati della analisi in forma grafica.

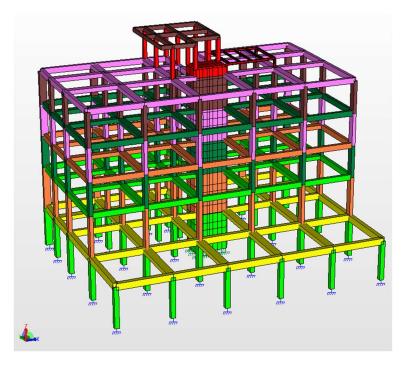


Figura 3 - 18.1: - modello fem edificio E1_C - vista S-O

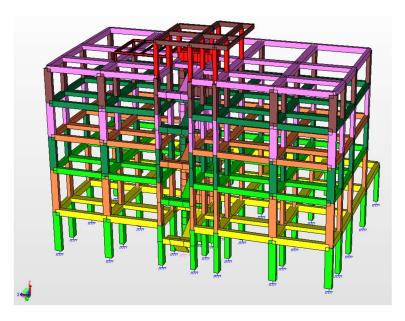


Figura 3 - 18.2: - modello fem edificio E1_C - vista N-O

A.3 - 18.1 Dati di input e risultati dell'elaborazione per lo SLV

STAMPA DEI DATI DI PROGETTO

INTESTAZIONE E DATI CARATTERISTICI DELLA STRUTTURA

Nome dell'archivio di lavoro
Intestazione del lavoro
Edificio E1-C
Tipo di struttura
Nello Spazio
Tipo di analisi
Statica e Dinamica

Tipo di soluzione Lineare
Unita' di misura delle forze kN
Unita' di misura delle lunghezze m

Normativa NTC-2018

Normativa

Vita nominale costruzione50 anniClasse d'uso costruzioneIIVita di riferimento50 anni

Localita' Napoli - Via Isidoro Fuortes 129

Longitudine (WGS84)14.3281Latitudine (WGS84)40.8514Categoria del suoloBCoefficiente topografico1Coefficiente di smorzamento5%Eccentricita' accidentale10%Numero di frequenze15

Comportamento strutturale NON Dissipativo

PARAMETRI SISMICI

	TR	ag/g	FO	TC*	CC	Ss	Pga (ag*S) (m/s^2)
SLO	30	0.0457	2.3370	0.28	1.42	1.20	0.538
SLD	50	0.0604	2.3350	0.31	1.39	1.20	0.711
SLV	475	0.1691	2.3780	0.34	1.36	1.20	1.991
SLE	475	0.1691	2.3780	0.34	1.36	1.20	1.991
SLC	975	0.2144	2.4500	0.34	1.36	1.19	2.503

Stato limite ultimo

Fattore di comportamento q per sisma orizzontale qor=1.07

STATO LIMITE DI DANNO

Fattore di comportamento q per sisma orizzontale qor=1 Coeff.moltiplicativo sisma 1.000

Parametri sismici

Angolo del sisma nel piano orizzontale 0

Sisma verticale Assente
Combinazione dei modi CQC

Combinazione componenti azioni sismiche NTC - Eurocodice 8

 λ 0.3 μ 0.3

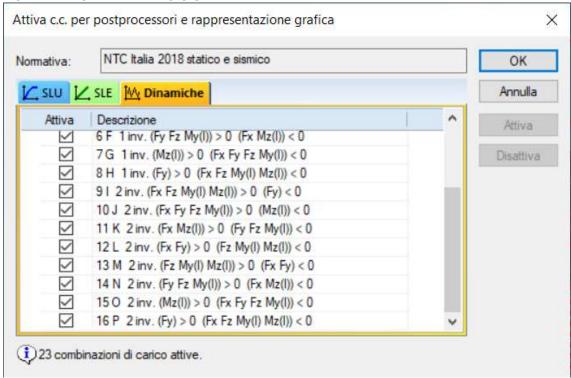
PROSPETTO RIASSUNTIVO CENTRI DELLE MASSE E DELLE RIGIDEZZE

	CI	ENTRI DELLE M	ASSE	CENTRI DELI	LE RIGIDEZZE	ECCENTRICITA' RELATIVE		
Nodo	Coord. X	Coord. Y	Coord. Z	Nodi master automatici	Coord. X	Coord. Y	Coord. X	Coord. Y
809	13.594	11.000	4.090	-2	14.569	13.587	0.975	2.587
810	13.565	13.991	8.430	-3	14.744	14.339	1.179	0.348
811	13.545	13.973	11.780	-4	14.844	14.300	1.299	0.327
812	13.548	13.974	15.130	-5	14.844	14.300	1.296	0.327
813	13.563	14.213	18.480	-6	14.831	14.318	1.268	0.104
814	13.140	17.439	21.830	-7	11.642	21.087	-1.499	3.648

A.3 - 18.2 Combinazioni di carico

COMBINAZIONI DI CARICO

Normativa: NORME TECNICHE PER LE COSTRUZIONI 2018 Italia


Combin	azioni per le verifiche Descrizione	allo stato limite ultimo Parametri	Tipo azione/categoria	Condizione	Moltiplicatore
1	SLV_01	Azione sismica: Presente	Dermananta: Dana Bransia	Candiziana nasa nyanyia	1.000
	021_01	Azione sismica. I resente	Permanente: Peso Proprio Permanente: Permanente portato	Condizione peso proprio Condizione 1	1.000
			Variabile: Domestici e residenziali	Condizione 3	0.300
			Variabile: Aree di acquisto e congresso	Condizione 3 Condizione 2	0.600
			Variabile: Aree di acquisto e congresso	Condizione 8	0.600
			Variabile: Neve	Condizione 4	0.000
2	SLV_02	Azione sismica: Presente	Permanente: Peso Proprio	Condizione peso proprio	1.000
			Permanente: Permanente portato	Condizione 1	1.000
			Variabile: Domestici e residenziali	Condizione 3	0.300
			Variabile: Aree di acquisto e congresso	Condizione 2	0.600
			Variabile: Autorimesse	Condizione 5	0.000
3	SLU_01	Azione sismica: Sisma assente	Nessuna	Condizione 7	0.000
			Permanente: Peso Proprio	Condizione peso proprio	1.300
			Permanente: Permanente portato	Condizione 1	1.500
			Variabile: Domestici e residenziali	Condizione 3	1.500
			Variabile: Aree di acquisto e congresso	Condizione 2	1.500
			Variabile: Aree di acquisto e congresso	Condizione 8	1.500
			Variabile: Neve	Condizione 4	1.500
4	SLU_02	Azione sismica: Sisma assente	Nessuna	Condizione 7	1.500
			Permanente: Peso Proprio	Condizione peso proprio	1.300
			Permanente: Permanente portato	Condizione 1	1.500
			Variabile: Domestici e residenziali	Condizione 3	1.500
			Variabile: Aree di acquisto e congresso	Condizione 2	1.500
			Variabile: Aree di acquisto e congresso	Condizione 8	1.500
			Variabile: Neve	Condizione 4	0.750
5	SLU_03	Azione sismica: Sisma assente	Nessuna	Condizione 7	0.000
			Permanente: Peso Proprio	Condizione peso proprio	1.300
			Permanente: Permanente portato	Condizione 1	1.500
			Variabile: Domestici e residenziali	Condizione 3	0.000
			Variabile: Aree di acquisto e congresso	Condizione 2	0.000
			Variabile: Autorimesse	Condizione 5	1.125
	0 0		Variabile: Neve	Condizione 4	0.000
6	SLU_04: zona gialla	Azione sismica: Sisma assente	Permanente: Peso Proprio	Condizione peso proprio	1.000
			Permanente: Permanente portato	Condizione 1	1.000
			Variabile: Domestici e residenziali	Condizione 3	0.300
			Variabile: Aree di acquisto e congresso	Condizione 2	0.600
			Variabile: Aree di acquisto e congresso	Condizione 8	0.600
			Variabile: Neve	Condizione 4	0.000
7	CIII OE: incondia	Aziono oigmino: Ciama gasarta	Eccezionale	Condizione 6	1.000
7	SLU_05: incendio	Azione sismica: Sisma assente	Permanente: Peso Proprio	Condizione peso proprio	1.000
			Permanente: Permanente portato	Condizione 1	1.000
			Variabile: Domestici e residenziali	Condizione 3	0.300
			Variabile: Aree di acquisto e congresso	Condizione 2	0.600
			Variabile: Aree di acquisto e congresso	Condizione 8	0.600
			Variabile: Neve	Condizione 4	0.000

um.	Descrizione	Parametri	Tipo azione/categoria	Condizione	Moltiplicat
8	SLE_01_rara	Tipologia: Rara	Nessuna	Condizione 7	0.00
			Permanente: Peso Proprio	Condizione peso proprio	1.00
			Permanente: Permanente portato	Condizione 1	1.00
			Variabile: Domestici e residenziali	Condizione 3	1.00
			Variabile: Aree di acquisto e congresso	Condizione 2	1.00
			Variabile: Aree di acquisto e congresso	Condizione 8	1.0
			Variabile: Neve	Condizione 4	1.5
9	SLE_02_rara	Tipologia: Rara	Nessuna	Condizione 7	1.00
			Permanente: Peso Proprio	Condizione peso proprio	1.0
			Permanente: Permanente portato	Condizione 1	1.0
			Variabile: Domestici e residenziali	Condizione 3	1.0
			Variabile: Aree di acquisto e congresso	Condizione 2	1.0
			Variabile: Aree di acquisto e congresso	Condizione 8	1.0
			Variabile: Neve	Condizione 4	0.7
10	SLE_03_rara	Tipologia: Rara	Nessuna	Condizione 7	0.0
			Permanente: Peso Proprio	Condizione peso proprio	1.0
			Permanente: Permanente portato	Condizione 1	1.0
			Variabile: Domestici e residenziali	Condizione 3	0.0
			Variabile: Aree di acquisto e congresso	Condizione 2	0.0
			Variabile: Autorimesse	Condizione 5	0.7
			Variabile: Neve	Condizione 4	0.0
11	SLE_01_freq	Tipologia: Frequente	Nessuna	Condizione 7	0.0
			Permanente: Peso Proprio	Condizione peso proprio	1.0
			Permanente: Permanente portato	Condizione 1	1.0
			Variabile: Domestici e residenziali	Condizione 3	0.5
			Variabile: Aree di acquisto e congresso	Condizione 2	0.7
			Variabile: Aree di acquisto e congresso	Condizione 8	0.7
			Variabile: Neve	Condizione 4	0.2
12	SLE_01_qp	Tipologia: Frequente	Nessuna	Condizione 7	0.0
			Permanente: Peso Proprio	Condizione peso proprio	1.0
			Permanente: Permanente portato	Condizione 1	1.0
			Variabile: Domestici e residenziali	Condizione 3	0.3
			Variabile: Aree di acquisto e congresso	Condizione 2	0.6
			Variabile: Aree di acquisto e congresso	Condizione 8	0.6
			Variabile: Neve	Condizione 4	0.0

Combinazioni per le verifiche allo stato limite di danno							
Num.	Descrizione	Parametri					
13	SLD_01	Azione sismica: Presente					

Tipo azione/categoria	Condizione	Moltiplicatore
Permanente: Peso Proprio	Condizione peso proprio	1.000
Permanente: Permanente portato	Condizione 1	1.000
Variabile: Domestici e residenziali	Condizione 3	0.300
Variabile: Aree di acquisto e congresso	Condizione 2	0.600
Variabile: Aree di acquisto e congresso	Condizione 8	0.600
Variabile: Neve	Condizione 4	0.000

COMBINAZIONI DI CARICO SISMICHE

A.3 - 18.3 Diagrammi delle sollecitazioni

Figura 3 - 18.3: Diagramma inviluppo combinazioni SLU-SLV - sforzo normale Fx

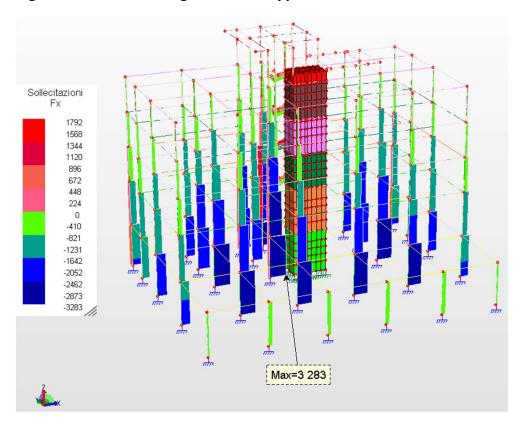
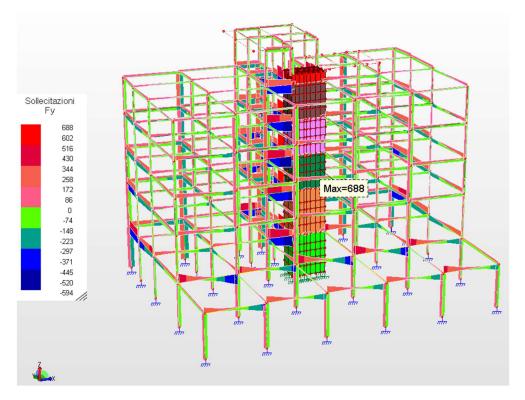



Figura 3 - 18.4: Diagramma inviluppo combinazioni SLU-SLV - sforzo di taglio Fy

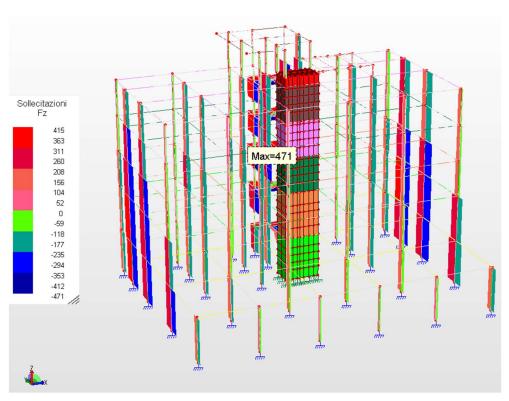
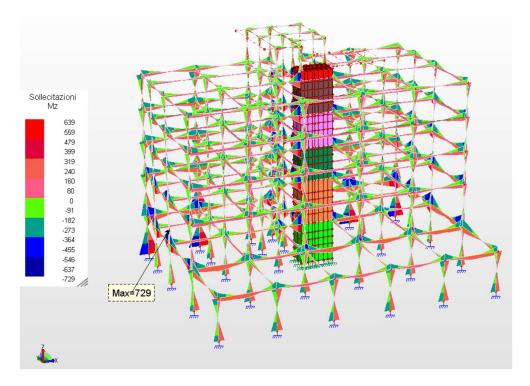



Figura 3 - 18.5: Diagramma inviluppo combinazioni SLU-SLV - sforzo di taglio Fz

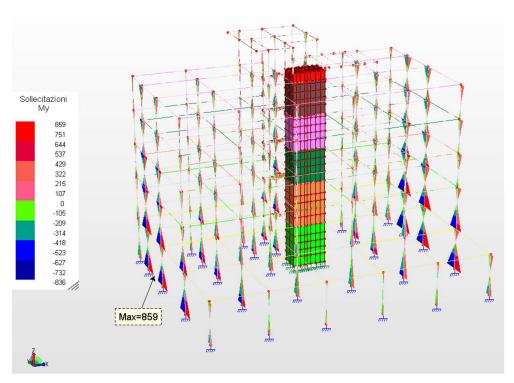
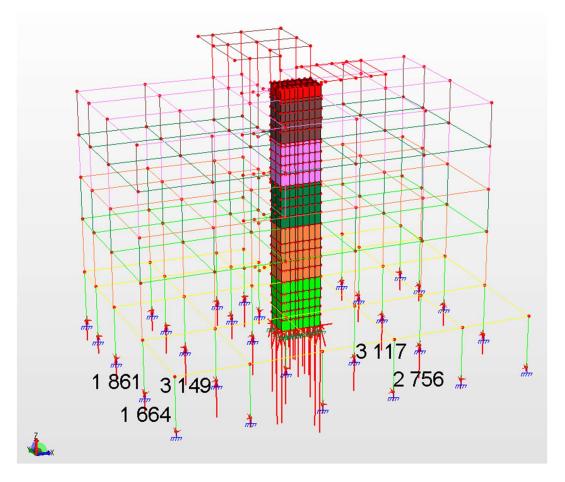



Figura 3 - 18.7: Diagramma inviluppo combinazioni SLU-SLV – momento flettente My

PROSPETTO DI STAMPA DELLE REAZIONI VINCOLARI

Nome progetto: edificio 1C Tipo analisi: dinamica Normativa: NTC 2018 Numero frequenze: 15 Sisma verticale: No Modo in direzione X: 3 Modo in direzione Y: 2 λ: 0.3 H: 0.3 Unità di misura delle forze: kN Unità di misura delle lunghezze: m

Stampa delle reazioni vincolari

Nodo 4		Descrizione SLV 01	Azione sismica EX + 0.3 EY	FX 127.05	FY -21.574	FZ 230.23	MX 51.032	MY 270.35	MZ 9.69155
4		SLV 01	EX - 0.3 EY	78.51	-86.374	199.57	192.632	159.95	3.33155
4	1	SLV_01	-EX + 0.3 EY	-37.55	98.026	152.03	-208.968	-105.65	-3.32845
4		SLV_01	-EX - 0.3 EY	-86.09	33.226	121.37	-67.368	-216.05	-9.68845
4		SLV_01 SLV 01	0.3 EX + EY -0.3 EX + EY	126.07 76.69	95.886 131.766	238.63 215.17	-205.168 -283.168	267.55 154.75	12.5545 8.64855
4		SLV 01	0.3 EX - EY	-35.73	-120.114	136.43	266.832	-100.45	-8.64545
4		SLV_01	-0.3 EX - EY	-85.11	-84.234	112.97	188.832	-213.25	-12.5515
4		SLV_02	EX + 0.3 EY	123.45	-21.563	205.83	51.023	265.53	9.69165
4		SLV_02 SLV 02	EX - 0.3 EY	74.91 -41.15	-86.363 98.037	175.17 127.63	192.623 -208.977	155.13 -110.47	3.33165 -3.32835
4		SLV 02	-EX + 0.3 EY -EX - 0.3 EY	-89.69	33.237	96.97	-67.377	-220.87	-9.68835
4		SLV 02	0.3 EX + EY	122.47	95.897	214.23	-205.177	262.73	12.5547
4		SLV_02	-0.3 EX + EY	73.09	131.777	190.77	-283.177	149.93	8.64865
4		SLV_02	0.3 EX - EY	-39.33	-120.103	112.03	266.823	-105.27	-8.64535
4		SLV_02 SLU 01	-0.3 EX - EY	-88.71 32.58	-84.223 7.892	88.57 267.7	188.823 -11.17	-218.07 43.19	-12.5513 -5.558e-05
4		SLU 02		32.58	7.9	267.7	-11.19		-9.806e-05
4		SLU_03		42.64	7.498	338.2	-10.53	56.79	0.002402
4		SLU_04: zona gialla		20.49	5.811	175.8	-8.137	27.18	0.001534
4		SLU_05: incendio SLE 01 rara		20.48	5.826 5.978	175.8 192.1	-8.168 -8.423	27.15	0.001548 -3.684e-05
4		SLE 02 rara		22.93	5.98	192.1	-8.427		-4.347e-05
4	10	SLE_03_rara		29.63	5.71	239.1	-7.987	39.47	0.001645
4		SLE_01_freq	==	21.09	5.866	179.9	-8.235	27.96	0.00111
4		SLE_01_qp Inviluppo (pos)	 	20.48 127.05	5.826 131.777	175.8 338.2	-8.168 266.832	27.15 270.35	0.001548 12.5547
4		Inviluppo (pos)		-89.69	-120.114	0	-283.177	-220.87	-12.5515
4		Inviluppo	==	127.05	131.777	338.2	-283.177	270.35	12.5547
5		SLV_01	EX + 0.3 EY	122.52	-52.731	1441.8	146.353	274.88	21.4534
5 5		SLV_01	EX - 0.3 EY -EX + 0.3 EY	93.24 -25.88	-178.731 191.269	1288.2 889.8	516.553 -535.647	200.48 -111.12	7.35342 -7.34658
5		SLV_01 SLV 01	-EX - 0.3 EY	-55.16	65.269	736.2	-165.447	-185.52	-21.4466
5		SLV_01	0.3 EX + EY	104.74	179.669	1427.8	-524.247	226.58	27.8234
5		SLV_01	-0.3 EX + EY	60.22	252.869	1262.2	-728.847	110.78	19.1834
5 5		SLV_01 SLV 01	0.3 EX - EY -0.3 EX - EY	7.14 -37.38	-240.331 -167.131	915.8 750.2	709.753 505.153	-21.42 -137.22	-19.1766 -27.8166
5		SLV 02	EX + 0.3 EY	118.79	-52.694	1415.8	146.324	269.88	21.4537
5		SLV_02	EX - 0.3 EY	89.51	-178.694	1262.2	516.524	195.48	7.35366
5		SLV_02	-EX + 0.3 EY	-29.61	191.306	863.8	-535.676	-116.12	-7.34634
5 5		SLV_02 SLV 02	-EX - 0.3 EY 0.3 EX + EY	-58.89 101.01	65.306 179.706	710.2 1401.8	-165.476 -524.276	-190.52 221.58	-21.4463 27.8237
5		SLV 02	-0.3 EX + EY	56.49	252.906	1236.2	-728.876	105.78	19.1837
5		SLV_02	0.3 EX - EY	3.41	-240.294	889.8	709.724	-26.42	-19.1763
5		SLV_02	-0.3 EX - EY	-41.11	-167.094	724.2	505.124	-142.22	-27.8163
5 5		SLU_01 SLU 02		53.6 53.58	10.06 10.07	1680 1683	-15.39 -15.41		-0.0001229 -0.0002169
5		SLU 03		57.94	9.117	1561	-13.74	77.09	0.005313
5	6	SLU_04: zona gialla		33.69	6.25	1089	-9.477	44.72	0.003392
5		SLU_05: incendio		33.68	6.269	1089	-9.547	44.68	0.003423
5 5		SLE_01_rara SLE 02 rara	 	37.53 37.53	6.56 6.563	1189 1190	-10.12 -10.13		-8.15e-05 -9.616e-05
5		SLE 03 rara	==	40.44	5.924	1108	-10.13 -9	53.8	0.003638
5	11	SLE_01_freq	==	34.62	6.346	1115	-9.696	45.92	0.002455
5		SLE_01_qp	==	33.68	6.269	1089	-9.547	44.68	0.003423
5 5		Inviluppo (pos) Inviluppo (neg)	 	122.52 -58.89	252.906 -240.331	1683 0	709.753 -728.876	274.88 -190.52	27.8237 -27.8166
5		Inviluppo (neg)		122.52	252.906	1683	-728.876	274.88	27.8237
6		SLV_01	EX + 0.3 EY	68.81	-60.937	1636	159.523	168.04	21.4534
6			EX - 0.3 EY	75.05	-201.337	1408	548.923	184.48	7.35342
6		SLV_01 SLV 01	-EX + 0.3 EY -EX - 0.3 EY	-45.59 -39.35	205.063 64.663	1034 806	-556.477 -167.077	-145.96 -129.52	-7.34658 -21.4466
6		SLV_01	0.3 EX + EY	21.49	195.963	1691.3	-545.377	38.96	27.8234
6	1	SLV_01	-0.3 EX + EY	-12.83	275.763	1510.7	-760.177	-55.24	19.1834
6		SLV_01	0.3 EX - EY	42.29	-272.037	931.3			
6		SLV_01 SLV 02	-0.3 EX - EY EX + 0.3 EY	7.97 68.54	-192.237 -60.918		537.823 159.518		
6			EX - 0.3 EY		-201.318	1408	548.918	184.12	7.35366
6			-EX + 0.3 EY	-45.86	205.082	1034	-556.482	-146.32	-7.34634
6		SLV_02	-EX - 0.3 EY	-39.62	64 682	806	-167 082	-129 88	-21 4463
6 6		SLV_02 SLV 02	0.3 EX + EY -0.3 EX + EY	21.22 -13.1	195.982 275.782 -272.018 -192.218	1691.3 1510 7	-545.382 -760 192	38.6	27.8237
6		SLV_02	0.3 EX - EY	42.02	-272.018	931.3	752.618	93.4	-19.1763
6	2	SLV_02	-0.3 EX - EY	7.7	-192.218	750.7	537.818	-0.800003	-27.8163
6		SLU_01	==	23.26	3.835	1856	-7.242	30.4	-0.0001229
6		SLU_02 SLU 03		23.22 17.46	3.839	1862	-7.256 -1 994	30.36	-0.0002169
6		SLU 04: zona gialla		14.74	0.1495 1.841	1221	-3.704	19.3	0.003392
6	7	SLU_05: incendio		14.73	1.863	1221	-3.777	19.26	0.003423
6		SLE_01_rara	==	16.3	2.733	1320	-5.108	21.31	-8.15e-05
6		SLE_02_rara SLE 03 rara		16.29 12.46	2.734 0.273	1322 1158	-5.113 -1.599	21.3 16.27	-0.0002169 0.005313 0.003392 0.003423 -8.15e-05 -9.616e-05 0.003638
Ü						-100	,	-0.27	

			15.11 14.73 75.05 -45.86 75.05 51.819 65.859 -48.181 -34.141 0.439001 -29.561 47.239 51.787 65.827 -48.213 -34.173 0.407001 -29.593 47.207 17.207 13.64 13.61 10.12 8.845 8.839 9.549 9.559 7.22 9.004 8.839 9.549 9.559 114.55 168.25 -139.45 -85.76 -85.77 -86.82 -85.76 -86.82 -85.76 -86.82 -86.82 -86.82 -86.83					
6 6	11 SLE_01_freq 12 SLE 01 qp		15.11 14.73	2.072 1.863	1247 1221	-4.1 -3.777	19.75 19.26	0.002455 0.003423
6	14 Inviluppo (pos)		75.05	275.782	1862	752.623	184.48	27.8237
6 6	15 Inviluppo (neg) 16 Inviluppo		-45.86 75.05	-272.037 275.782	0 1862	-760.182 -760.182	-146.32 184.48	
7 7	1 SLV_01	EX + 0.3 EY	51.819	-76.279	1324	181.94	144.29 186.41	
7	1 SLV_01	-EX + 0.3 EY	-48.181	211.721	708	-568.06	-163.71	-7.34658
7 7	1 SLV_01 1 SLV_01	-EX - 0.3 EY 0.3 EX + EY	-34.141 0.439001	57.521 204.421	547.2 1296	-160.06 -556.56	-121.59 -12.65	-21.4466 27.8234
7	1 SLV_01	-0.3 EX + EY	-29.561	290.821	1111.2	-781.56	-105.05	19.1834
7 7	1 SLV_01 1 SLV 01	0.3 EX - EY -0.3 EX - EY	47.239 17.239	-309.579 -223.179	760 575.2	803.44 578.44	127.75 35.35	
7 7	2 SLV_02	EX + 0.3 EY	51.787	-76.296 -230 496	1324	181.98 589.98	144.25	
7	2 SLV_02	-EX + 0.3 EY	-48.213	211.704	708	-568.02	-163.75	-7.34634
7 7	2 SLV_02 2 SLV 02	-EX - 0.3 EY 0.3 EX + EY	-34.173 0.407001	57.504 204.404	547.2 1296	-160.02 -556.52	-121.63 -12.69	-21.4463 27.8237
7	2 SLV_02	-0.3 EX + EY	-29.593	290.804	1111.2	-781.52 803.48	-105.09	19.1837
7 7	2 SLV_02 2 SLV_02	-0.3 EX - EY	17.207	-223.196	575.2	578.48	35.31	-19.1763
7 7	3 SLU_01 4 SLU 02		13.64	-14.75 -14.76	1410	17.09	17.51	-0.0001229
7	5 SLU_03		10.12	-10.87	1241	12.44	12.94	0.005313
7 7	6 SLU_04: zona gialla 7 SLU_05: incendio		8.845 8.839	-9.402 -9.379	935.6 935.6	11.02	11.39	0.003392
7	8 SLE_01_rara 9 SLE_02_rara		9.549	-10.42 -10.42	1006	12.11	12.25	-0.0001229 -0.0002169 0.005313 0.003392 0.003423 -8.15e-05 -9.616e-05 0.003638 0.002455 0.003423
7	10 SLE_03_rara		7.22	-7.83	890.3	9.01	9.234	0.003638
7 7	11 SLE_U1_freq 12 SLE 01 qp		9.004 8.839	-9.638 -9.379	953.8 935.6	11.23	11.56	
7	14 Inviluppo (pos)		65.859 -48 213	290.821	1414	803.48 -781.56	186.41	
7	16 Inviluppo (neg)		65.859	-309.596	1414	803.48	186.41	27.8237
8	1 SLV_01 1 SLV 01	EX + 0.3 EY EX - 0.3 EY	114.55 168.25	112.191 33.5909	900 1404	79.359 269.559	335.93 503.33	
8	1 SLV_01	-EX + 0.3 EY	-139.45 -85.75	-33.6091	-288 216	-270.641	-468.07 -300.67	-7.34658 -21.4466
8	1 SLV_01	0.3 EX + EY	-37	152.861	-103.8	-265.041	-140.77	27.8234
8	1 SLV_01 1 SLV 01	-0.3 EX + EY 0.3 EX - EY	-113.2 142	109.121 -109.139	-460.2 1576.2	-370.041 368.959	-381.97 417.23	19.1834 -19.1766
8	1 SLV_01	-0.3 EX - EY	65.8	-152.879	1219.8	263.959	176.03	-27.8166
8	2 SLV_02 2 SLV_02	EX + 0.3 EY	168.24	33.5844	1404.1	269.576	335.92 503.32	7.35366
8	2 SLV_02 2 SLV 02	-EX + 0.3 EY -EX - 0.3 EY	-139.46 -85.76	-33.6156 -112.216	-287.9 216.1	-270.624 -80.4239	-468.08 -300.68	-7.34634 -21.4463
8	2 SLV_02	0.3 EX + EY	-37.01	152.854	-103.7	-265.024	-140.78	27.8237
8	2 SLV_02 2 SLV_02	0.3 EX + EY	141.99	-109.114	1576.3	368.976	-381.98 417.22	
8	2 SLV_02 3 SLU_01	-0.3 EX - EY	65.79 21.94	-152.886 0.05735	1219.9 818	263.976 -0.9948	176.02 26.84	-27.8163 -0.0001229
8	4 SLU_02		21.94	0.06491	819.8	-1.009	26.84	-0.0002169
8	6 SLU_04: zona gialla		14.41	-0.1233	558.8	-0.5783	17.7	0.005313 0.003392
8	7 SLU_05: incendio 8 SLE 01 rara	 	14.4 15.43	-0.00906 0.0835	558 587.6	-0.541 -0.7443	17.63 18.86	0.003423 -8.15e-05
8	9 SLE_02_rara		15.43	0.08604	588.2	-0.749	18.86	-9.616e-05
8	10 SLE_03_rara 11 SLE_01_freq		14.64	0.01433	565.7	-0.4573	17.92	0.003638 0.002455
8	12 SLE_01_qp 14 Inviluppo (pos)	 	14.4 168.25	-0.00906 152.861	558 1576.3	-0.541 368.976	17.63 503.33	
8	15 Inviluppo (neg)		-139.46	-152.886	-460.2	-370.041	-468.08	-27.8166
8 10	16 Inviluppo 1 SLV_01	EX + 0.3 EY	168.25 61.087	109.165	15/6.3	-370.041 -339.808	503.33 156.362	27.8237 21.4534
10 10	1 SLV_01	EX - 0.3 EY -EX + 0 3 EY	79.087 -76.713	22.765 -33.835	1408.5 1677.5	-64.408 76.192	203.822 -201.638	7.35342 -7.34658
10	1 SLV_01	-EX - 0.3 EY	-58.713	-120.235	1570.7	351.592	-154.178	-21.4466
10 10	1 SLV_01 1 SLV_01	0.3 EX + EY -0.3 EX + EY	-8.143 -49.483	159.915 117.015	1696.67 1745.33	-515.508 -390.708	-24.308 -131.708	27.8234 19.1834
10 10	1 SLV_01 1 SLV 01	0.3 EX - EY -0.3 EX - EY	51.857 10.517	-128.085 -170.985	1340.67 1389.33	402.492 527.292	133.892 26.492	-19.1766 -27.8166
10	2 SLV_02	EX + 0.3 EY	61.096	109.155	1515.3	-339.774	156.373	21.4537
10 10	2 SLV_02 2 SLV_02	EX - 0.3 EY -EX + 0.3 EY	79.096 -76.704	22.755 -33.845	1408.5 1677.5	-64.374 76.226	203.833 -201.627	7.35366 -7.34634
10 10	2 SLV_02 2 SLV 02	-EX - 0.3 EY 0.3 EX + EY	-58.704 -8.134	-120.245 159.905	1570.7 1696.67	351.626 -515.474	-154.167 -24.297	-21.4463 27.8237
10	2 SLV_02	-0.3 EX + EY	-49.474	117.005	1745.33	-390.674	-131.697	19.1837
10 10	2 SLV_02 2 SLV_02	0.3 EX - EY -0.3 EX - EY	51.866 10.526	-128.095 -170.995	1340.67 1389.33	402.526 527.326	133.903 26.503	-19.1763 -27.8163
10 10	3 SLU_01 4 SLU 02		1.864 1.873	-8.602 -8.616	2363 2371	9.044 9.052		-0.0001229 -0.0002169
10	5 SLU_03		1.416	-6.849	2028	7.143	1.268	0.005313
10 10	6 SLU_04: zona gialla 7 SLU_05: incendio		1.239 1.187	-5.55 -5.535	1544 1543	5.957 5.892	1.184	0.003392 0.003423
10 10	8 SLE_01_rara 9 SLE 02 rara		1.33 1.334	-6.095 -6.1	1682 1685	6.451 6.454		-8.15e-05 -9.616e-05
10	10 SLE_03_rara		1.028	-4.917	1454	5.179	0.9303	0.003638
10 10	11 SLE_01_freq 12 SLE_01_qp		1.224 1.187	-5.679 -5.535	1579 1543	6.038 5.892	1.128 1.092	0.002455 0.003423
10 10	14 Inviluppo (pos) 15 Inviluppo (neg)	 	79.096 -76.713	159.915 -170.995	2371 0	527.326 -515.508	203.833 -201.638	27.8237 -27.8166
10	16 Inviluppo		79.096	-170.995	2371	527.326	203.833	27.8237
11 11	1 SLV_01 1 SLV_01	EX + 0.3 EY EX - 0.3 EY	125.089 192.889	-14.996 -60.236	427 855.4	36.212 164.012	349.909 535.909	21.4534 7.35342
11 11	1 SLV_01 1 SLV_01	-EX + 0.3 EY -EX - 0.3 EY	-204.911 -137.111	55.804 10.564	981 1409.4	-159.188 -31.388	-554.091 -368.091	-7.34658 -21.4466
11	1 SLV_01	0.3 EX + EY	-69.511	62.564	121.1	-181.278	-183.491	27.8234
11 11	1 SLV_01 1 SLV_01	-0.3 EX + EY 0.3 EX - EY	-168.511 156.489	83.804 -88.236	287.3 1549.1	-239.898 244.722	-454.691 436.509	19.1834 -19.1766
11 11	1 SLV_01 2 SLV 02	-0.3 EX - EY EX + 0.3 EY	57.489 125.09	-66.996 -15.001	1715.3 427.1	186.102 36.226	165.309 349.908	-27.8166 21.4537
11	2 SLV_02	EX - 0.3 EY	192.89	-60.241	855.5	164.026	535.908	7.35366
11	2 SLV_02 Commessa: CNAR.005-0	-EX + 0.3 EY	-204.91 D.Z01.STR.ST.01.RE.01_00	55.799 Relazion	981.1 Rev	-159.174	-554.092	-7.34634 pag. A.3-121
	COMMISSON CIVARIOUS-C	,	e sulle strutture.dog		VEA			pag. A.3-121

			-137.11 -69.51 -168.51 -168.51 -156.49 -57.49 -9.789 -6.38 -5.936 -6.011 -6.865 -6.86 -4.589 -6.22 -6.011 -192.89 -204.911 -204.911 -204.911 -68.528 -76.628 -85.872 -77.772 -5.038 -41.282 -32.038 -14.282 -6.85 -6.69 -85.81 -77.71 -7.71 -7.71 -7.71 -7.71 -7.71 -7.72 -7.72 -7.73				
11	2 SLV 02	-EA - U 3 EA	_137 11	10 559	1/09 5	_31 37/	-368.092 -21.4463
11	2 SLV 02	0.3 EX + EY	-69 51	62.559			-183.492 27.8237
11	2 SLV 02	-0.3 EX + EY	-168.51	83.799			-454.692 19.1837
11	2 SLV 02	0.3 EX - EY	156.49	-88.241			
11	2 SLV 02	-0.3 EX - EY	57.49	-67.001	1715.4	186.116	436.508 -19.1763 165.308 -27.8163 -14.73 -0.0001229 -14.71 -0.0002169 -9.897 0.005313
11	3 SLU 01		-9.797	-3.677	1370	4.013	-14.73 -0.0001229
11	4 SLU 02		-9.789	-3.658	1374	3.984	-14.71 -0.0002169
11	5 SLU_03		-6.38	-1.96	1226	1.875	-9.897 0.005313
11	6 SLU_04: zona gialla		-5.936	-2.219	919.6	2.435	-8.938 0.003392
11	7 SLU_05: incendio		-6.011	-2.216	918.2	2.412	-9.091 0.003423
11	8 SLE_01_rara		-6.865	-2.534	978.4	2.766	-10.32 -8.15e-05
	9 SLE_02_rara		-6.86	-2.527	979.6	2.756	-10.31 -9.616e-05
	10 SLE_03_rara		-4.589	-1.402	879.7	1.36	-7.105 0.003638
	11 SLE_01_freq		-6.22	-2.291	933.8	2.495	-9.395 0.002455
	12 SLE_01_qp 14 Inviluppo (pos)		-6.UII	-2.210	1715 /	2.412	-9.897 0.005313 -8.938 0.003392 -9.091 0.003423 -10.32 -8.15e-05 -10.31 -9.616e-05 -7.105 0.003638 -9.395 0.002455 -9.091 0.003423 535.909 27.8237
	15 Inviluppo (neg)		-204 911	-88.241			-554.092 -27.8166
	16 Inviluppo (neg/		-204.311	-88 241			-554.092 27.8237
15	16 Inviluppo 1 SLV_01 1 SLV 01	EX + 0.3 EY	68.528	86.73			167.827 21.4534
15	1 SLV 01	EX - 0.3 EY	76.628	11.13	1827.8	-46.94	186.787 7.35342
15	1 SLV 01	-EX + 0.3 EY	-85.872	-43.07	2228.2	86.06	186.787 7.35342 -200.173 -7.34658 -181.213 -21.4466
15	1 SLV_01	-EX - 0.3 EY	-77.772	-118.67	2081.8	347.06	-181.213 -21.4466
15	1 SLV_01	0.3 EX + EY	5.038	129.5			16.907 27.8234
15	1 SLV_01	-0.3 EX + EY	-41.282	90.56	2310.1	-356.34	-93.493 19.1834 80.107 -19.1766
15	1 SLV_01	0.3 EX - EY	32.038	-122.5	1745.9	395.46	80.107 -19.1766
15	1 SLV_01	-0.3 EX - EY	-14.282	-161.44			-30.293 -27.8166
15 15	2 SLV_02	EX + U.3 EY	68.59 76.60	86./6			167.911 21.4537 186.871 7.35366
15	2 SLV_02 2 SLV 02	-EA T U 3 EA	-85 81	-43 04	1827.8 2228.2		-200.089 -7.34634
15	2 SLV 02	-EX - 0.3 EY	=77 71	-118 64	2081.8		-181.129 -21.4463
15	2 SLV 02	0.3 EX + EY	5.1	129.53	2233.9	-474.56	16.991 27.8237
15	2 SLV 02	-0.3 EX + EY	-41.22	90.59	2310.1	-356.36	16.991 27.8237 -93.409 19.1837 80.191 -19.1763 -30.209 -27.8163
15	2 SLV_02	0.3 EX - EY	32.1	-122.47	1745.9	395.44	80.191 -19.1763
15	2 SLV_02	-0.3 EX - EY	-14.22	-161.41	1822.1	513.64	-30.209 -27.8163
15	3 SLU_01		-7.42	-24.84	3138	30.31	-10.73 -0.0001229
15	4 SLU_02		-7.407	-24.84	3150	30.3	-10.72 -0.0002169
15	5 SLU_03		-5.195	-19.13	2656	23.23	-7.589 0.005313
15	6 SLU_04: zona gialla		-4.566	-15.98	2029	19.62	-6.595 0.003392
15 15	7 SLU_05: incendio		-4.622 5.212	-15.97	2028	19.56	-6.693 0.003423
	8 SLE_01_rara 9 SLE 02 rara	==	-5.212	-17.49	2229	21.30	7 522 0 6160 05
	10 SLE 03 rara		-3.200 -3.734	-17.49	1900	16 66	-30.209 -27.8163 -10.73 -0.0001229 -10.72 -0.0002169 -7.589 0.005313 -6.595 0.003392 -6.693 0.003423 -7.542 -8.15e-05 -7.533 -9.616e-05 -5.45 0.003638 -6.899 0.002455 -6.693 0.003423 186.871 27.8237
15	11 SLE 01 freq		-4 764	-16 35	2080	20.00	-6 899 0 002455
	12 SLE 01 qp		-4.622	-15.97	2028	19.56	-6.693 0.003423
	14 Inviluppo (pos)		76.69	129.53	3150	513.66	186.871 27.8237
	15 Inviluppo (neg)		-85.872	-161.44	0	-474.56	-200.173 -27.8166
15	16 Inviluppo		-85.872	-161.44	3150	513.66	-200.173 27.8237
	1 SLV_01	EX + 0.3 EY	-41.22 32.1 -14.22 -7.42 -7.42 -7.47 -5.195 -4.566 -4.622 -5.212 -5.206 -3.734 -4.764 -4.622 76.69 -85.872 -85.872 103.69 -65.77 -94.11 -132.03 -78.7 19.36 -47.7 -107.04 104.22 -66.3 -93.58 -131.5 79.23 19.89 -47.17 -106.51 -22.66 -18.35 -14.14 -14.17	120.25	1827	-350.53	-200.173 27.8237 249.72 21.4534 163.32 7.35342 -202.28 -7.34658 -288.68 -21.4466
	1 SLV_01	EX - 0.3 EY	65.77	50.05	1695	-96.13	163.32 7.35342
16	1 SLV_01	-EX + 0.3 EY	-94.11	-2.75	2061	31.47	-202.28 -7.34658
16	1 SLV_01	-EX - 0.3 EY	-132.03	-72.95	1929	285.87	-288.68 -21.4466
16 16	1 SLV_01 1 SLV 01	0.3 EX + EY	10.36	122.2			192.32 27.8234
16	1 SLV_01 1 SLV 01	-0.3 EX + EI	19.30	122.2 _7/ 0	1622.9	-399.03	56.72 19.1834 -95.68 -19.1766
16	1 SLV_01	-0.3 EX - EV	-107 04	-111 8	1693.1		-231.28 -27.8166
16	2 SLV 02	EX + 0.3 EY	104.22	120.31			250.43 21.4537
16	2 SLV 02	EX - 0.3 EY	66.3	50.11	1637	-96 18	164 03 7 35366
16	2 SLV 02	-EX + 0.3 EY	-93.58	-2.69	2003	31.42	-201.57 -7.34634 -287.97 -21.4463
16	2 SLV 02	-EX - 0.3 EY	-131.5	-72.89	2003 1871	285.82	-287.97 -21.4463
16	2 SLV_02	0.3 EX + EY	79.23	159.16	2004.9	-513.68	193.03 27.8237
16	2 SLV_02	-0.3 EX + EY	19.89	122.26	2075.1	-399.08	57.43 19.1837
16	2 SLV_02	0.3 EX - EY	-47.17	-74.84	1564.9	334.32	-94.97 -19.1763
16	2 SLV_02	-0.3 EX - EY	-106.51	-111.74			-230.57 -27.8163
16	3 SLU_01		-22.67	38.51			-31.18 -0.0001229
16 16	4 SLU_02 5 SLU 03		-22.00 -18 35	38.52	2964	-52.67 -37.63	-31.17 -0.0002169 -25.21 0.005313
16	6 SLU 04: zona gialla		-14.14	23.65	2735 1878 1878	-32.27	-19.43 0.003392
16	7 SLU 05: incendio		-14.17	23.65	1878	-32.33	-19.48 0.003423
16	8 SLE 01 rara		-15.94	26.54	2083 2085 1930 1932 1878 2964	-36.29	-21.92 -8.15e-05
16	9 SLE 02 rara		-15.93	26.55	2085	-36.29	-21.92 -9.616e-05
16	10 SLE_03_rara		-13.06	19.09	1930	-26.26	-17.95 0.003638
	11 SLE_01_freq		-14.6	24.37	1932	-33.31	-20.08 0.002455
	12 SLE_01_qp		-14.17	23.65	1878	-32.33	-19.48 0.003423
16 16	14 Inviluppo (pos) 15 Inviluppo (neg)		104.22 -132.03	-111.8	2964	448.97 -513.68	250.43 27.8237 -288.68 -27.8166
16	16 Inviluppo (neg)		-132.03	159.16	2964	-513.68	-288.68 27.8237
17	1 SLV_01	EX + 0 3 EY	123.115	-3.657	355.84		264.784 9.69155
17	1 SLV 01	EX - 0.3 EY	65.575	-45.897	328.96		142.384 3.33155
17	1 SLV 01	-EX + 0.3 EY	-74.685	60.543	416.64		-155.216 -3.32845
17	1 SLV 01	-EX - 0.3 EY	-132.225	18.303	389.76		-277.616 -9.68845
17	1 SLV_01	0.3 EX + EY	121.015	68.093	408.48	-153.53	260.584 12.5545
17	1 SLV_01	-0.3 EX + EY	61.675		426.72		134.584 8.64855
17	1 SLV_01	0.3 EX - EY	-70.785	-72.707			-147.416 -8.64545
17	1 SLV_01	-0.3 EX - EY	-130.125	-53.447	337.12		-273.416 -12.5515
17	2 SLV_02	EX + 0.3 EY	123.746	-3.633		15.49	265.631 9.69165
17 17	2 SLV_02 2 SLV 02	EX - U.3 EY	66.206 -74.054	-45.873	269.46 357.14		143.231 3.33165 -154.369 -3.32835
17	2 SLV_02 2 SLV 02	-EX + U.3 EI	-74.034 -131.594	60.567			
17	2 SLV_02 2 SLV 02	0.3 EX + EV	-131.594 121.646	18.327 68.117	330.26 348.98	-35.91 -153.56	-276.769 -9.68835 261.431 12.5547
17	2 SLV_02 2 SLV 02	-0.3 EX + EY	62.306	87.377		-198.86	135.431 8.64865
17	2 SLV 02	0.3 EX - EY	-70.154	-72.683	259.38		-146.569 -8.64535
17	2 SLV 02	-0.3 EX - EY	-129.494	-53.423	277.62		-272.569 -12.5513
17	3 SLU_01		-7.28		580.3		-10.27 -5.558e-05
17	4 SLU_02		-7.279	9.663	580.3	-13.55	-10.27 -9.806e-05
17	5 SLU_03		-15.94 -15.93 -13.06 -14.6 -14.17 104.22 -132.03 -132.03 123.115 65.575 -74.685 -132.225 121.015 61.675 -70.785 -130.125 123.746 66.206 -74.054 -131.594 121.646 62.306 -70.154 -129.494 -7.28 -7.279 -8.585 -4.536	9.563	753	-13.31	-11.9 0.002402
17	6 SLU_04: zona gialla		-4.536	7.311	372.8 372.8	-10.15	-6.376 0.001534
17	/ SHO_US. INCENDIO		F 122	7 205	/12 E	10 21	-6.416 0.001548
17 17	8 SLE_01_rara 9 SLE_02_rara		-5.122 -5.121	7.385	412.5	-10.31 -10.31	-7.225 -3.684e-05 -7.222 -4.347e-05
17	9 SLE_02_rara 10 SLE 03 rara		-5.121 -5.991	7.388 7 219	412.5 527.6 382.7 372.8 753	-10.31 -10.15	-7.222 -4.347e-05 -8.308 0.001645
17			-5.991 -4.697	7.310	382 7	-10.13	-6.618 0.00111
17	12 SLE 01 qp		-4.555	7.323	372.8	-10.18	-6.416 0.001548
	14 Inviluppo (pos)		123.746	87.377	753	178.47	265.631 12.5547
			D 701 STD ST 01 DE 01 00	D 1 :			nag A 3-

17	15 Inviluppo (neg)		-132.225	-72.707	0	-198.86	-277.616 -12.5515
17	16 Inviluppo		-132 225	87.377	753		-277.616 12.5547
22	1 SLV_01	EX + 0.3 EY EX - 0.3 EY	135.79	94.966	324.9		220.283 23.3537
22	1 SLV_01	EX - 0.3 EY	204.19		1440.9	38.493	331.283 4.2737
22 22	1 SLV_01	-EX + 0.3 EY	-186.21	11.766 -102.834	-353.1 762.9	-33.907 216.293	-313.717 -3.4463 -202.717 -22.5263
22	1 SLV_01 1 SLV 01	-EX - 0.3 EY 0.3 EX + EY	-117.81 -56.71	199.546		-441.377	-202.717 -22.3263 -96.117 36.2337
22	1 SLV 01	-0.3 EX + EY	-153.31	174.586		-388.037	-256.317 28.1937
22	1 SLV_01	0.3 EX - EY	171.29	-182.454	2505.6	392.623	273.883 -27.3663
22	1 SLV_01	-0.3 EX - EY	74.69	-207.414	2302.2	445.963	113.683 -35.4063
22 22	2 SLV_02	EX + 0.3 EY	135.791	94.949	325.1 1441.1	-211.672	220.283 23.3514 331.283 4.2714
22	2 SLV_02 2 SLV 02	EX - 0.3 EY -EX + 0.3 EY	-186 209	-19.651 11.749	-352.9	38.528 -33.872	331.283 4.2714 -313.717 -3.4486
22	2 SLV 02	-EX - 0.3 EY	-117.809	-102.851	763.1		-202.717 -22.5286
22	2 SLV_02	0.3 EX + EY	-56.709	199.529	-1214.2	-441.342	-96.117 36.2314
22	2 SLV_02	-0.3 EX + EY	-153.309	174.569		-388.002	
22 22	2 SLV_02 2 SLV 02	0.3 EX - EY -0.3 EX - EY	171.291	-182.471 -207.431	2505.8 2302.4	392.658 445.998	273.883 -27.3686 113.683 -35.4086
22	3 SLU 01	U.S EA EI	14.31	-6.221	802.1	3.114	13.91 1.03
22	4 SLU 02		135.79 204.19 -186.21 -117.81 -56.71 -153.31 171.29 74.69 135.791 -186.209 -117.809 -56.709 -153.309 171.291 74.691 14.31 14.3	-6.238	805.8		13.9 1.025
22	5 SLU_03		10.50	-5.181	805.8 716.6 571.9	3.164	10.69 0.4243
22	6 SLU_04: zona gialla		8.946	-4.075	571.9	2.501	8.789 0.3776
22 22	7 SLU_05: incendio 8 SLE 01 rara		8.99 10.11	-3.934 -4.484	543.9 583.2	2.293 2.349	8.783 0.4137 9.821 0.6804
22	9 SLE 02 rara		10.11	-4.492	584.9		9.821 0.6783
22	10 SLE_03_rara		7.89	-3.785		2.381	7.68 0.279
22	11 SLE_01_freq	==	9.294	-4.093	554.3	2.316	9.062 0.49
22 22	12 SLE_01_qp		8.99	-3.934 199.546	543.9	2.293 445.998	8.783 0.4137 331.283 36.2337
22	14 Inviluppo (pos) 15 Inviluppo (neg)		-186 21	-207.431		-441.377	
22	16 Inviluppo		204.191	-207.431		445.998	331.283 36.2337
34	1 SLV_01	EX + 0.3 EY	63.07	72.087		-217.966	159.27 21.4534
34	1 SLV_01	EX - 0.3 EY	85.69	1.887		-0.765994	212.97 7.35342
34 34	1 SLV_01 1 SLV 01	-EX + 0.3 EY	-10/.13 -84.51	2.687 -67.513		-7.96601 209.234	-242.73 -7.34658 -189.03 -21.4466
34	1 SLV 01	0.3 EX + EY	-22.89	129.697	1702.3	-397.866	-44.08 27.8234
34	1 SLV_01	-0.3 EX + EY	-73.95	108.877	1275.7	-334.866	-164.68 19.1834
34	1 SLV_01	0.3 EX - EY	52.51	-104.303		326.134	
34 34	1 SLV_01	-0.3 EX - EY	1.45	-125.123 72.076	723.7 2006.8	389.134 -217.934	14.32 -27.8166 159.26 21.4537
34	2 SLV_02 2 SLV 02	EX + 0.3 EY	85.00 85.68	1.876		-0.733994	212.96 7.35366
34	2 SLV 02	-EX + 0.3 EY	-107.14	2.676		-7.93401	-242.74 -7.34634
34	2 SLV_02	-EX - 0.3 EY	-84.52	-67.524	419.2	209.266	-189.04 -21.4463
34	2 SLV_02	0.3 EX + EY	-22.9	129.686	1702.3	-397.834	-44.09 27.8237
34 34	2 SLV_02 2 SLV 02	-0.3 EX + EY	-/3.96 52.5	108.866 -104.314	1275.7 1150.3	-334.834 326.166	-164.69 19.1837 134.91 -19.1763
34	2 SLV 02	-0.3 EX - EY	1.44	-125.134	723.7	389.166	14.31 -27.8163
34	3 SLU_01	==	-16.37	3.963	1830	-7.409	-22.74 -0.0001229
34	4 SLU_02		8.99 10.11 10.11 7.89 9.294 8.99 204.191 -186.21 204.191 63.07 85.69 -107.13 -84.51 -22.89 -73.95 52.51 1.45 63.06 85.68 -107.14 -84.52 -22.9 -73.96 52.5 1.44 -16.37 -16.39 -13.47	3.958	1839	-7.411	-22.76 -0.0002169
34 34	5 SLU_03 6 SLU 04: zona gialla		-13.47 -10.73	1.915 2.261	1601 1257	-4.357 -4.287	-18.69 0.005313 -14.87 0.003392
34	7 SLU 05: incendio		-10.73	2.287	1213	-4.366	-14.88 0.003392
34	8 SLE_01_rara		-11.58	2.737	1309	-5.113	
34	9 SLE_02_rara	==	-11.58	2.735	1313	-5.113	
34	10 SLE_03_rara		-9.627	1.374	1152 1237	-3.076	-13.36 0.003638 -15.18 0.002455
34 34	11 SLE_01_freq 12 SLE 01 qp		-9.627 -10.94 -10.72 85.69 -107.14 -107.14 112.611 75.9506 -76.9894 -113.649	2.392 2.287	1237	-4.542 -4.366	-15.18 0.002455 -14.88 0.003423
34	14 Inviluppo (pos)		85.69	129.697	2006.8	389.166	212.97 27.8237
34	15 Inviluppo (neg)		-107.14	-125.134	0	-397.866	-242.74 -27.8166
34	16 Inviluppo		-107.14	129.697	2006.8		-242.74 27.8237
43 43	1 SLV_01 1 SLV 01	EX + U.3 EY	112.611 75.9506	52.547 -2.773	1811.8 1666	-173.541 22.659	261.117 21.4534 176.517 7.35342
43	1 SLV 01	-EX + 0.3 EY	-76.9894	13.547	1938	-39.541	-178.883 -7.34658
43	1 SLV_01	-EX - 0.3 EY	-113.649	-41.773	1792.2	156.659	-263.483 -21.4466
43	T 2TA_0T	0.3 EA T EI	09.0200	103.437	2026.07	-355.541	205.817 27.8234
43 43	1 SLV_01 1 SLV 01	-0.3 EX + EY 0.3 EX - EY	32.1406 -33.1794	91.737 -80.963	2063.93 1540.07	-315.341 298.459	73.817 19.1834 -76.183 -19.1766
43	1 SLV 01	-0.3 EX - EY	-90.0594	-92.663	1577.93		-208.183 -27.8166
43	2 SLV_02	EX + 0.3 EY	112.788	52.598		-173.591	261.356 21.4537
43	2 SLV_02	EX - 0.3 EY	76.128	-2.722	1611	22.609	176.756 7.35366
43 43	2 SLV_02 2 SLV 02	-EX + 0.3 EY -EX - 0.3 EY	-76.812 -113.472	13.598 -41.722	1883 1737.2	-39.591 156.609	-178.644 -7.34634 -263.244 -21.4463
43	2 SLV 02	0.3 EX + EY	89.198	103.488	1971.07	-355.591	206.056 27.8237
43	2 SLV_02	-0.3 EX + EY	32.318	91.788	2008.93	-315.391	74.0557 19.1837
43	2 SLV_02	0.3 EX - EY	-33.002	-80.912	1485.07	298.409	-75.9443 -19.1763
43 43	2 SLV_02 3 SLU 01	-0.3 EX - EY	-89.882 -0.7894	-92.612 8.933	1522.93 2810	338.609 -13.92	-207.944 -27.8163 -1.843 -0.0001229
43	4 SLU 02		-0.787	8.938	2817	-13.93	-1.84 -0.0002169
43	5 SLU 03		-1.503	7.309	2622	-11.45	-2.625 0.005313
43	6 SLU_04: zona gialla		-0.4994	5.377	1802	-8.383	-1.133 0.003392
43	7 SLU_05: incendio		-0.5194	5.387	1802	-8.441	-1.183 0.003423
43 43	8 SLE_01_rara 9 SLE 02 rara		-0.5616 -0.56	5.806 5.807	1986 1989	-9.131 -9.136	-1.306 -8.15e-05 -1.302 -9.616e-05
43	10 SLE 03 rara		-1.037	4.72	1857	-7.475	-1.825 0.003638
43	11 SLE_01_freq		-0.528	5.495	1850	-8.618	-1.212 0.002455
43	12 SLE_01_qp		-0.5194	5.387	1802	-8.441	-1.183 0.003423
43 43	14 Inviluppo (pos) 15 Inviluppo (neg)		112.788 -113.649	103.488 -92.663	2817 0	338.659 -355.591	261.356 27.8237 -263.483 -27.8166
43	16 Inviluppo (neg)		-113.649	103.488	2817	-355.591	-263.483 27.8237
49	1 SLV_01	EX + 0.3 EY	105.823	-24.83	3171.5	-167.6	224.84 21.4534
49	1 SLV_01	EX - 0.3 EY	91.123	-81.11	2742.5	31.6	198.62 7.35342
49 49	1 SLV_01 1 SLV_01	-EX + 0.3 EY	-110.177 -124.877	33.97 -22.31	151.5 -277.5	27.4 226.6	-225.16 -7.34658 -251.38 -21.4466
49	1 SLV_01 1 SLV 01	0.3 EX + EY	-124.877 47.373	61.41	2615	-331.75	97.93 27.8234
49	1 SLV_01	-0.3 EX + EY	-17.427	79.05	1709	-273.25	-37.07 19.1834
49	1 SLV_01	0.3 EX - EY	-1.627	-126.19	1185 279	332.25	10.53 -19.1766
49 49	1 SLV_01	-0.3 EX - EY	-66.427	-108.55 -24.81	279	390.75	-124.47 -27.8166
49	2 SLV_02 2 SLV 02	EX - 0.3 EY	105.809 91.109	-24.81 -81.09	3171.5 2742.5	-167.62 31.58	224.82 21.4537 198.6 7.35366
49	2 SLV_02	-EX + 0.3 EY	-0.787 -1.503 -0.4994 -0.5194 -0.5616 -0.56 -1.037 -0.528 -0.5194 112.788 -113.649 -113.649 -105.823 -110.177 -124.877 -47.373 -17.427 -1.627 -66.427 -105.809 -91.109 -110.191	33.99	151.5	27.38	-225.18 -7.34634
49	Z 3HV_0Z	EA 0.5 EI	124.031	-22.29	-277.5	226.58	-251.4 -21.4463
49 49	2 SLV_02 2 SLV 02	0.3 EX + EY -0.3 EX + EY	47.359 -17.441	61.43 79.07	2615 1709	-331.77 -273.27	97.91 27.8237 -37.09 19.1837
	_		D 701 STD ST 01 DE 01 00				-37.09 19.1837

49	2 SLV 02	0.3 EX - EY	-1.641	-126.17	1185	332.23	10.51	-19.1763
49	2 SLV_02	-0.3 EX - EY	-66.441	-108.53	279	390.73		-27.8163
49	3 SLU_01		-14.63	-37.16	2208			-0.0001229
49	4 SLU_02	 	-14.66	-37.16 -27.23 -23.54 -23.57 -26.14	2217	46.43		-0.0002169
49 49	5 SLU_03 6 SLU 04: zona gialla		-12.21 -9.553	-27.23 -23.54	1472	33.8 29.5		0.005313 0.003392
49	7 SLU 05: incendio		-9.527	-23.57	1447			0.003332
49	8 SLE 01 rara		-10.32	-26.14	1447 1574 1578	32.7		-8.15e-05
49	9 SLE_02_rara		-10.33	-26.14	1578	32.69	-14.41	-9.616e-05
49	10 SLE_03_rara		-8.693	-19.52	1364	24.28		0.003638
49	11 SLE_01_freq	==	-9.731	-24.2	1480	30.28		
49 49	12 SLE_01_qp 14 Inviluppo (pos)		-9.527 105.823	-23.57 79.07	1447	29.5 390.75	-13.27 224.84	
49	15 Inviluppo (pos)		-124.891	-126.19		-331.77		
49	16 Inviluppo		-124.891	-126.19	3171.5		-251.4	
50	1 SLV_01	EX + 0.3 EY	-124.891 -124.891 -124.891 -124.891 -124.891 -125.72 -88.88 -68.88 -68.88 -105.72 -100.59 -42.21 -22.21 -80.59 -125.545 -88.705 -69.055 -105.895 -100.415 -42.035 -22.385 -80.765 -16.03 -16.03 -11.75 -10.02 -10 -11.28 -11.28 -11.28 -11.28 -11.28 -11.28 -11.28 -11.28 -11.28 -125.72 -105.895 -125.72 -105.895 -125.72 -105.895 -125.72 -125.117	78.68	1938.3			
50	1 SLV_01	EX - 0.3 EY	88.88	24.68			194.63	
50	1 SLV_01	-EX + 0.3 EY	-68.88	22.68	1849.1	-36.58		
50 50	1 SLV_01 1 SLV 01	-EX - U.3 EY	-1U5.72 100.50	-31.32 122.08	1735.7 2039.38	159.62 -387.55	-253.37 221.13	
50	1 SLV 01	-0.3 EX + EY	42.21	105.28		-331.21	86.73	
50	1 SLV 01	0.3 EX - EY	-22.21	-57.92	1661.38	266.45		
50	1 SLV_01	-0.3 EX - EY	-80.59	-74.72		322.79		
50	2 SLV_02	EX + 0.3 EY	125.545	78.73	1883.3			
50	2 SLV_02	EX - 0.3 EY	88.705	24.73	1769.9		194.39	
50 50	2 SLV_02 2 SLV 02	-EX + U.3 EY	-69.055 -105.895	22.73 -31.27	1794.1 1680.7	-36.63 159.57		
50	2 SLV 02	0.3 EX + EY	100.415	122.13	1984.38	-387.6	220.89	
50	2 SLV 02	-0.3 EX + EY	42.035	105.33		-331.26	86.49	
50	2 SLV_02	0.3 EX - EY	-22.385	-57.87		266.4		-19.1763
50	2 SLV_02	-0.3 EX - EY	-80.765	-74.67	1579.62	322.74		-27.8163
50	3 SLU_01		16.03	38.59	2892	-52.75		-0.0001229
50 50	4 SLU_02 5 SLU 03		16.03 11.75	38.6 27.31	2899 2674	-52.78 -37.61	15.15	-0.0002169 0.005313
50	6 SLU 04: zona gialla		10.02	23.69	1027			
50	7 SLU 05: incendio		10	23.69 23.68 26.6 26.6 19.07	1837	-32.38	12.97 12.93	0.003423
50	8 SLE_01_rara		11.28	26.6	2037	-36.35	14.58	-8.15e-05
50	9 SLE_02_rara		11.28	26.6	2039			-9.616e-05
50	10 SLE_03_rara		8.435	19.07	1887		10.88	
50 50	11 SLE_01_freq 12 SLE 01 qp		10.31	24.41 23.68	1890 1837	-33.37 -32.38		
50	14 Inviluppo (pos)		125.72	122.13				
50	15 Inviluppo (neg)		-105.895	-74.72			-253.61	
50	16 Inviluppo		125.72 125.117 69.197 -66.683 -122.603 123.227 65.687 -63.173 -120.713 124.913 68.993 -66.887 -122.807 123.023 65.483 -63.377 -120.917 1.988 1.988 2.465	122.13	2899			
51	1 SLV_01	EX + 0.3 EY	125.117	38.222	364.17	-84.3		
51	1 SLV_01 1 SLV 01	EX - 0.3 EY	69.197	6.842		-8.7	147.379 -144.621	
51 51	1 SLV_01 1 SLV 01	-EX + U.3 EY	-66.683 -122.603	8.422 -22.958	333.83		-144.621	
51	1 SLV 01	0.3 EX + EY	123.227	64.402	378.576	-147.37		12.5545
51	1 SLV 01	-0.3 EX + EY	65.687	55.462		-125.83	139.579	8.64855
51	1 SLV_01	0.3 EX - EY	-63.173	-40.198	323.576		-136.821	-8.64545
51	1 SLV_01	-0.3 EX - EY	-120.713	-49.138	319.424	126.17		
51 51	2 SLV_02 2 SLV 02	EX + 0.3 EY	124.913	38.246 6.866	308.67 292.17	-84.33	267.106 147.106	
51	2 SLV 02	-EX + 0 3 EY	-66 887	8.446	294.83		-144.894	
51	2 SLV 02	-EX - 0.3 EY	-122.807	-22.934	278.33		-264.894	-9.68835
51	2 SLV_02	0.3 EX + EY	123.023	64.426	323.076	-147.4	262.906	12.5547
51	2 SLV_02	-0.3 EX + EY	65.483	55.486	318.924	-125.86	139.306	8.64865
51	2 SLV_02	0.3 EX - EY	-63.377	-40.174	268.076		-137.094	
51 51	2 SLV_02 3 SLU 01	-U.3 EX - EY	-12U.91/ 1 988	-49.114 10.04	263.924 542.3	126.14 -14.06		-12.5513 -5.558e-05
51	4 SLU 02		1.988	10.05	542.3			-9.806e-05
51	5 SLU 03		2.465	9.983	704.1		2.922	0.002402
51	6 SLU_04: zona gialla		1.275	7.62	348.9	-10.57	1.417	0.001534
51	7 SLU_05: incendio		1.257	7.632	349	-10.6		0.001548
51 51	8 SLE_01_rara 9 SLE 02 rara		1.399	7.685 7.687	385.8 385.8	-10.71 -10.72		-3.684e-05 -4.347e-05
51	10 SLE 03 rara	==	1.718	7.639	493.6	-10.72	2.031	
51	11 SLE 01 freq		1.291	7.648	358.1	-10.63	1.412	0.00111
51	12 SLE_01_qp		1.257	7.632	349	-10.6	1.379	0.001548
51	14 Inviluppo (pos)	==	125.117	64.426	704.1	126.17	267.379	
51 51	15 Inviluppo (neg)	 	-122.807 125.117	-49.138 64.426	0 704.1	-147.4 -147.4	-264.894 267.379	
60	16 Inviluppo 1 SLV 01	EX + 0.3 EY	55.739	98.338	1532	-296.089	148.88	21.4534
60	1 SLV 01	EX - 0.3 EY	74.339	20.938	1444.4	-51.889	197.18	7.35342
60	1 SLV_01	-EX + 0.3 EY	-88.461	-15.462	1655.6	41.911	-217.12	-7.34658
60	1 SLV_01	-EX - 0.3 EY	-69.861	-92.862	1568	286.111	-168.82	
60 60	1 SLV_01 1 SLV 01	0.3 EX + EY -0.3 EX + EY	-16.431 -59.691	148.808 114.668	16//.46	-462.689 -361.289	-35.57 -145.37	
60		0.3 EX - EY	45.569	-109.192	1385.46	351.311	125.43	
60	1 SLV 01	-0.3 EX - EY	2.309	-143.332	1422.54	452.711	15.63	
60	2 SLV_02	EX + 0.3 EY	55.73	98.328	1532	-296.061	148.868	21.4537
60		EX - 0.3 EY	74.33	20.928	1444.4	-51.861	197.168	
60		-EX + 0.3 EY	-88.47	-15.472	1655.6	41.939		
60 60	2 SLV_02 2 SLV 02	-EX - 0.3 EY 0.3 EX + EY	-69.87 -16.44	-92.872 148.798	1568 1677.46	286.139 -462.661	-168.832 -35.582	-21.4463 27.8237
60	2 SLV 02	-0.3 EX + EY	-59.7	114.658	1714.54	-361.261		19.1837
60	2 SLV_02	0.3 EX - EY	45.56	-109.202	1385.46	351.339	125.418	
60	2 SLV_02	-0.3 EX - EY	2.3	-143.342	1422.54	452.739	15.618	-27.8163
60	3 SLU_01		-11.49	4.713	2377	-8.389		-0.0001229
60	4 SLU_02		-11.49	4.698	2387	-8.377		-0.0002169
60 60	5 SLU_03 6 SLU 04: zona gialla	 	-7.581 -7.046	2.208	2039 1550	-4.792 -4.925	-10.8 -9.927	0.005313 0.003392
60	7 SLU 05: incendio	==	-7.046 -7.061	2.724	1550	-4.925		0.003392
60	8 SLE_01_rara		-8.042	3.248	1692	-5.781		-8.15e-05
60	9 SLE_02_rara		-8.041	3.243	1696	-5.777	-11.33	-9.616e-05
60	10 SLE_03_rara		-5.435	1.588	1460	-3.391	-7.737	
60 60	11 SLE_01_freq		-7.302 -7.061	2.856	1586	-5.174	-10.31	
60 60	12 SLE_01_qp 14 Inviluppo (pos)		-7.061 74.339	2.738 148.808	1550 2387	-4.989 452.739	-9.97 197.18	0.003423 27.8237
60	15 Inviluppo (pos)		-88.47	-143.342	2367	-462.689	-217.132	-27.8166
60	16 Inviluppo		-88.47	148.808	2387	-462.689	-217.132	27.8237
61	1 SLV_01	EX + 0.3 EY	73.32	59.79	1924.2	-243.12	173.95	21.4534
	Commessa: CNAR.005-0	01-01.22.DEF	D.Z01.STR.ST.01.RE.01_00	_Relazion	Rev	00		pag. A.3-124
			e sulle strutture.doo					_

61	1 SLV 01	EX - 0.3 EY	83.82	-6.81	1741.8	-12.72	196.03 7.35342
61	1 SLV_01 1 SLV 01	-EX + 0.3 EY	-105.48	-42.81	2268.2	74.88	-226.05 -7.34658
61	1 SLV_01 1 SLV 01	-EX - 0.3 EY	-103.48		2085.8	305.28	-203.97 -21.4466
61	1 SLV_01	0.3 EX + EY	-1.51	101.58	2257.4	-400.62	8.19 27.8234
61	1 SLV 01	-0.3 EX + EY	-55.15	70.8	2360.6	-305.22	-111.81 19.1834
61	1 SLV 01	0.3 EX - EY	33.49	-120.42	1649.4	367.38	81.79 -19.1766
61	1 SLV 01	-0.3 EX - EY	-20.15	-151.2	1752.6	462.78	-38.21 -27.8166
61	2 SLV_02	EX + 0.3 EY	73.26	59.82	1924.2	-243.14	173.86 21.4537
61	2 SLV_02	EX - 0.3 EY	83.76	-6.78	1741.8	-12.74	195.94 7.35366
61	2 SLV_02	-EX + 0.3 EY	-105.54	-42.78	2268.2	74.86	-226.14 -7.34634
61	2 SLV_02	-EX - 0.3 EY	-95.04	-109.38	2085.8	305.26	-204.06 -21.4463
61	2 SLV_02	0.3 EX + EY	-1.57	101.61	2257.4	-400.64	8.1 27.8237
61	2 SLV_02	-0.3 EX + EY	-55.21	70.83	2360.6	-305.24	-111.9 19.1837
61 61	2 SLV_02 2 SLV 02	0.3 EX - EY -0.3 EX - EY	33.43 -20.21	-120.39 -151.17	1649.4 1752.6	367.36 462.76	81.7 -19.1763 -38.3 -27.8163
61	3 SLU 01	U.J EA EI	-17.44	-39.02	3105	48.87	-24.18 -0.0001229
61	4 SLU 02		-17.45	-39.02		48.86	-24.18 -0.0002169
61	5 SLU 03		-11.55	-28.66	2628		-16.11 0.005313
61	6 SLU 04: zona gialla		-10.81	-24.82	2005	31.14	-14.96 0.003392
61	7 SLU_05: incendio		-10.83	-39.02 -28.66 -24.82 -24.81 -27.47 -27.46 -20.56 -25.46 -24.81	2005	31.08	-15.01 0.003423
61	8 SLE_01_rara		-12.29	-27.47	2206	34.43	-17.03 -8.15e-05
61	9 SLE_02_rara		-12.29	-27.46	2210	34.43	
61	10 SLE_03_rara		-8.354	-20.56	1879	25.6	
61 61	11 SLE_01_freq 12 SLE 01 qp		-11.19	-23.40	2057 2005	31.91 31.08	-15.51 0.002455 -15.01 0.003423
61	14 Inviluppo (pos)		-10.03	-24.61 101 61	3118	462.78	196.03 27.8237
61	15 Inviluppo (neg)		-105.54	-151.2	0	-400.64	-226.14 -27.8166
61	16 Inviluppo		-105.54	-151.2	3118	462.78	-226.14 27.8237
62	1 SLV 01	EX + 0.3 EY	110.766	104	1946.4	-298.64	259.03 21.4534
62	1 SLV_01	EX - 0.3 EY	72.906	41.6	1815.6	-74.24	172.63 7.35342
62	1 SLV_01	-EX + 0.3 EY	-88.834	5.8	1738.4	9.36	-194.97 -7.34658
62	1 SLV_01	-EX - 0.3 EY	-126.694	-56.6	1607.6	233.76	-281.37 -21.4466
62	1 SLV_01	0.3 EX + EY	-8.354 -11.19 -10.83 83.82 -105.54 -105.54 110.766 72.906 -88.834 -126.694 85.076 25.196 -41.124 -101.004 110.236 72.376 -89.364 -127.224 84.546 24.666 -41.654 -101.534 -12.95 -6.033	142.43	2026.2	-452.64	200.93 27.8234
62	1 SLV_01 1 SLV 01	-0.3 EX + EY	25.196	112.97			64.73 19.1834
62 62	1 SLV_01 1 SLV 01	0.3 EX - EY -0.3 EX - EY	-41.124 101.004	-65.57 -95.03	1590.2	295.36 387.76	-87.07 -19.1766 -223.27 -27.8166
62	2 SLV 02	EX + 0.3 EY	110 236	104 06	1888.4	-298.7	258.32 21.4537
62	2 SLV 02	EX - 0.3 EY	72.376	41.66		-74.3	171.92 7.35366
62	2 SLV 02	-EX + 0.3 EY	-89.364	5.86	1680.4	9.3	-195.68 -7.34634
62	2 SLV 02	-EX - 0.3 EY	-127.224	-56.54	1549.6	233.7	-282.08 -21.4463
62	2 SLV 02	0.3 EX + EY	84.546	142.49	1968.2	-452.7	200.22 27.8237
62	2 SLV_02	-0.3 EX + EY	24.666	113.03	1905.8	-360.3	64.02 19.1837
62	2 SLV_02	0.3 EX - EY	-41.654	-65.51	1532.2 1469.8	295.3	-87.78 -19.1763
62	2 SLV_02	-0.3 EX - EY	-101.534	-94.97	1469.8	387.7	-223.98 -27.8163
62	3 SLU_01		-12.95	38.4	2768	-52.5	-18.15 -0.0001229
62	4 SLU_02		-12.95	38.41	2775	-52.52	-18.16 -0.0002169
62 62	5 SLU_03 6 SLU 04: zona gialla		-6.033 -7.942	27.32 23.69	2601 1777	-37.67 -32.38	-8.7 0.005313 -11.11 0.003392
62	7 SLU 05: incendio		-7.942	23.7		-32.36	-11.11 0.003392
62	8 SLE 01 rara		-9.115	26.51	1956	-36.24	-12.78 -8.15e-05
62	9 SLE 02 rara		-9.117	26.51	1959	-36.24	-12.78 -9.616e-05
62	10 SLE_03_rara		-4.5	19.11	1840	-26.33	-6.468 0.003638
62	11 SLE_01_freq		-8.254	24.39		-33.38	-11.57 0.002455
62	12 SLE_01_qp		-7.964	23.7	1777	-32.44	-11.17 0.003423
62	14 Inviluppo (pos)		110.766	142.49	2775	387.76	259.03 27.8237
62	15 Inviluppo (neg)		-127.224	-95.03	0	-452.7	-282.08 -27.8166
62 63	16 Inviluppo	EV 1 0 2 EV	-127.224 130.251	142.49	2775	-452.7	-282.08 27.8237 274.354 9.69155
63	1 SLV_01 1 SLV 01	EX + 0.3 EY EX - 0.3 EY	72.711	52.241 14.861	412.91 386.69	-115.863 -27.663	274.354 9.69155 151.954 3.33155
63	1 SLV 01	-EX + 0.3 EY		-0.558999	356.71	7.737	-145.646 -3.32845
63	1 SLV 01	-EX - 0.3 EY	-125.089	-37.939	330.49	95.937	
63	1 SLV 01	0.3 EX + EY	128.151	77.371	423.83	-175.503	270.154 12.5545
63	1 SLV_01	-0.3 EX + EY	68.811	61.531	406.97	-138.423	144.154 8.64855
63	1 SLV_01	0.3 EX - EY	-63.649	-47.229	336.43	118.497	-137.846 -8.64545
63	1 SLV_01	-0.3 EX - EY	-122.989	-63.069	319.57	155.577	-263.846 -12.5515
63	2 SLV_02	EX + 0.3 EY	129.622	52.266	353.41	-115.892	273.511 9.69165
63 63		EX - 0.3 EY -EX + 0.3 EY	72.082 -68.178	14.886 -0.533999	327.19 297.21		151.111 3.33165 -146.489 -3.32835
63	2 SLV 02	-EX - 0.3 EY	-125.718	-37.914	270.99		-268.889 -9.68835
63	2 SLV 02	0.3 EX + EY	127.522	77.396	364.33	-175.532	269.311 12.5547
63		-0.3 EX + EY	68.182	61.556	347.47		143.311 8.64865
63	2 SLV_02	0.3 EX - EY	-64.278	-47.204	276.93	118.468	-138.689 -8.64535
63	2 SLV_02	-0.3 EX - EY	-123.618	-63.044	260.07	155.548	-264.689 -12.5513
63	3 SLU_01		4.076	9.343	578.5	-13.12	4.962 -5.558e-05
63	4 SLU_02		4.076	9.351	578.5	-13.13	4.962 -9.806e-05
63 63	5 SLU_03 6 SLU 04: zona gialla	==	6.305 2.599	9.367 7.139	751.7 371.7	-13.07 -9.935	8.072 0.002402 3.193 0.001534
63	7 SLU 05: incendio		2.599	7.151	371.7	-9.933	3.154 0.001534
63	8 SLE 01 rara		2.868	7 168	411.2	-9.935 -9.963 -10.02	3.491 -3.684e-05
63	9 SLE 02 rara		2.869	7 171	411.2	-10.02	3.493 -4.347e-05
63	10 SLE 03 rara		4.356	7 179	411.2 526.7 381.6	-9.977	5.568 0.001645
63	11 SLE_01_freq		2.651	7 157	381.6	-9.98	3.236 0.00111
63	12 SLE_01_qp	==	2.581	7.151	371.7	-9.963	3.236 0.00111 3.154 0.001548
63	14 Inviluppo (pos)		130.251	77.396	751.7	155.577	274.354 12.5547
63	14 Inviluppo (pos) 15 Inviluppo (neg) 16 Inviluppo	==	-125.718	-63.069	7.51 7		-268.889 -12.5515
63 72	16 Inviluppo 1 SLV 01	DA T U 3 EM	130.251	77.396	751.7 695.3		274.354 12.5547
72	1 SLV_01 1 SLV 01	EX - 0 3 EV	46.25	204.812 54.212	090.3 535.7	-531.019 -135.019	117.91 21.4534 159.79 7.35342
72	1 SLV_01 1 SLV 01	-EX + 0.3 EY	-66.61	-47.188	535.7 1299.3	122.981	-188.09 -7.34658
72	1 SLV 01	-EX - 0.3 EY	-52.75	-197.788	1139.7	518.981	-146.21 -21.4466
72	1 SLV_01	0.3 EX + EY	-18.43	292.312		-764.119	-38.05 27.8234
72	1 SLV_01	-0.3 EX + EY	-48.13	216.712	1274.1	-567.919	-129.85 19.1834
72	1 SLV_01	0.3 EX - EY	27.77	-209.688	560.9	555.881	101.55 -19.1766
72	1 SLV_01	-0.3 EX - EY	-1.93	-285.288	742.1	752.081	9.75 -27.8166
72	2 SLV_02	EX + 0.3 EY	32.42	204.799	695.3 535.7	-530.988	117.95 21.4537
72 72	2 SLV_02	EX - U.3 EY	46.28	54.199			159.83 7.35366
72	2 SLV_02 2 SLV 02	-EX = 0.3 EY	-66.58 -52.72	-47.201 -197.801	1299.3 1139.7	123.012 519.012	-188.05 -7.34634 -146.17 -21.4463
72	2 SLV_02 2 SLV 02	0.3 EX + EY	-52.72 -18.4	292.299	1092.9		-146.17 -21.4463 -38.01 27.8237
72	2 SLV 02	-0.3 EX + EY	-48.1	216.699	1274.1		-129.81 19.1837
72	2 SLV_02	0.3 EX - EY	27.8	-209.701		555.912	101.59 -19.1763
72	2 SLV_02	-0.3 EX - EY	-1.9	-285.301	742.1	752.112	9.79 -27.8163
72	3 SLU_01	==	-04.2/8 -123.618 4.076 4.076 6.305 2.599 2.581 2.869 4.356 2.651 2.581 130.251 -125.718 130.251 32.39 46.25 -66.61 -52.75 -18.43 -48.13 27.77 -1.93 32.42 46.28 -66.58 -52.72 -18.44 -48.1 27.8 -1.9		1379	-9.932	-21.93 -0.0001229
	CHAR OOF C	1 01 22 DEE	D 701 STD ST 01 DE 01 00	D - I 1	D	0.0	nag A 3

Commessa: CNAR.005-01-01.22.DEF

72	
72 9 SLE_02_rara 2 10 SLE_03_rara 2 10 SLE_03_rara 3 18E_01_freq 2 10 SLE_01_freq 3 18E_01_freq 4 10.39 3.65 934.7 -6.225 -14.44 0.0024 72 12 SLE_01_gp 46.28 292.312 1382 752.112 159.83 27.82 72 15 Inviluppo (pos) 46.28 292.312 1382 752.112 159.83 27.82 72 15 Inviluppo (pog) 66.61 -285.301 0 -764.119 -188.09 -27.81 73 1 SLV_01 EX + 0.3 EY 44.58 161.94 1036.3 -764.119 -188.09 27.81 73 1 SLV_01 EX + 0.3 EY 50.502 25.14 825.7 -97.32 150.97 7.353 73 1 SLV_01 EX + 0.3 EY 50.502 25.14 825.7 -97.32 150.97 7.353 73 1 SLV_01 -EX + 0.3 EY 50.502 25.14 825.7 -97.32 150.97 7.353 73 1 SLV_01 -EX + 0.3 EY 50.502 25.14 825.7 -97.32 150.97 7.353 73 1 SLV_01 -EX + 0.3 EY 50.502 25.14 825.7 -97.32 150.97 7.353 73 1 SLV_01 -EX + 0.3 EY 50.502 25.14 825.7 -97.32 150.97 7.353 73 1 SLV_01 -EX + 0.3 EY 50.502 25.14 825.7 -97.32 150.97 7.353 73 1 SLV_01 -EX + 0.3 EY 50.502 25.14 825.7 -97.32 150.97 7.353 73 1 SLV_01 -EX + 0.3 EY 50.502 25.14 825.7 -97.32 150.97 7.353 73 1 SLV_01 -EX + 0.3 EY 50.502 25.14 825.7 -97.32 150.97 7.353 73 1 SLV_01 -EX + 0.3 EY 50.502 25.14 825.7 -97.32 150.97 7.353 73 1 SLV_01 -EX + 0.3 EY 50.502 25.14 825.7 -97.32 150.97 7.353 73 1 SLV_01 -EX + 0.3 EY 50.502 25.14 825.7 -97.32 150.97 7.353 73 1 SLV_01 -EX + 0.3 EY 50.502 25.14 825.7 -97.32 150.97 7.353 73 1 SLV_01 -0.3 EX + EY 50.502 60.60 1603.3 150.68 -173.85 -73.46 19.18 73 1 SLV_01 -0.3 EX + EY 50.502 60.60 1653.8 -509.42 -62.64 19.18 73 1 SLV_02 EX + 0.3 EY 50.502 60.60 1653.8 -509.42 -62.64 19.18 73 2 SLV_02 EX + 0.3 EY 50.502 60.502 60.00 1653.8 -509.42 -60.63 50.502 60.000 60	23
72 11 SLE_01_freq)5
72 14 Inviluppo (pos)	55
72 16 Inviluppo 73 1 SLV 01 EX + 0.3 EY 44.58 161.94 1036.3 -475.32 136.15 21.45 73 1 SLV 01 EX + 0.3 EY 50.502 25.14 825.7 -97.32 150.97 7.353 73 1 SLV 01 -EX + 0.3 EY -66.82 -68.06 1608.3 150.68 -173.85 -7.346 73 1 SLV 01 -EX + 0.3 EY -60.898 -204.86 1397.7 528.68 -159.03 -21.46 73 1 SLV 01 0.3 EX + EY -1.319 241.04 1482.2 -697.22 10.36 27.82 73 1 SLV 01 0.3 EX + EY -34.739 172.04 1653.8 -509.42 -62.64 19.18 73 1 SLV 01 0.3 EX - EY 18.421 -214.96 780.2 562.78 597.6 -19.17 73 1 SLV 01 0.3 EX - EY 18.421 -214.96 780.2 562.78 597.6 -19.17 73 1 SLV 01 0.3 EX - EY 18.421 -214.96 780.2 562.78 597.6 -19.17 73 1 SLV 02 EX + 0.3 EY 50.77 25.16 824.7 -97.34 151.33 7.353 73 2 SLV 02 EX + 0.3 EY 50.77 25.16 824.7 -97.34 151.33 7.353 73 2 SLV 02 -EX + 0.3 EY 50.77 25.16 824.7 -97.34 151.33 7.353 73 2 SLV 02 -EX + 0.3 EY -66.552 -68.04 1607.3 150.66 -173.49 -7.346 73 2 SLV 02 -EX + 0.3 EY -60.63 -204.84 1396.7 528.66 -158.67 -21.44 73 2 SLV 02 -0.3 EX + EY -1.051 241.06 1481.2 -697.24 10.72 27.82 73 2 SLV 02 -0.3 EX + EY -1.051 241.06 1481.2 -697.24 10.72 27.82 73 2 SLV 02 -0.3 EX - EY -1.4731 -283.94 950.8 750.56 -32.88 -27.81 73 3 SLU 02 -0.3 EX - EY -1.4731 -283.94 950.8 750.56 -32.88 -27.81 73 3 SLU 02 -0.3 EX - EY -1.4731 -283.94 950.8 750.56 -32.88 -27.81 73 4 SLU 02 -0.3 EX - EY -1.4731 -283.94 950.8 750.56 -32.88 -27.81 73 5 SLU 02 -0.3 EX - EY -1.4731 -283.94 950.8 750.56 -32.88 -27.81 73 6 SLU 03	37
73 1 SLV 01	37
73 1 SLV_01	12
73	
73 2 SLV 02 EX + 0.3 EY 5.07.7 25.16 824.7 -97.34 136.51 21.45 73 2 SLV 02 EX - 0.3 EY 66.552 -68.04 1607.3 150.66 -173.49 -7.353 73 2 SLV 02 -EX - 0.3 EY -66.552 -68.04 1607.3 150.66 -173.49 -7.346 73 2 SLV 02 -EX - 0.3 EY -60.63 -204.84 1396.7 528.66 -158.67 -21.44 73 2 SLV 02 0.3 EX + EY -1.051 241.06 1481.2 -697.24 10.72 27.82 73 2 SLV 02 0.3 EX + EY -34.471 172.06 1652.8 -509.44 -82.28 19.18 73 2 SLV 02 0.3 EX - EY 18.689 -214.94 779.2 562.76 60.12 -19.17 73 2 SLV 02 -0.3 EX - EY 18.689 -214.94 779.2 562.76 60.12 -19.17 73 2 SLV 02 -0.3 EX - EY 18.689 -214.94 779.2 562.76 60.12 -19.17 73 3 SLU 01 12.73 -33.68 1849 41.88 -17.86 -0.00012 73 4 SLU 02 12.73 -33.68 1849 41.88 -17.86 -0.00012 73 5 SLU 03 10.44 -25.05 1613 30.88 -14.62 0.0053 73 5 SLU 05: incendio 8.149 -21.49 1216 26.76 -11.44 0.0034 73 8 SLE 01-rara 8.885 -23.67 1315 29.47 -12.47 -8.15e-73 10 SLE 03-rara 8.885 -23.67 1315 29.47 -12.47 -8.15e-73 10 SLE 03-rara 8.885 -23.67 1315 29.47 -12.45 -9.616e-73 10 SLE 03-rara 8.892 -22 1242 27.37 -11.68 0.0024 73 12 SLE 01-qp 8.159 -21.46 1217 26.68 -11.44 0.0034 73 12 SLE 01-qp 8.159 -21.46 1217 26.68 -11.44 0.0034 73 12 SLE 01-qp 8.159 -21.46 1217 26.68 -11.44 0.0034 73 12 SLE 01-qp 8.159 -21.46 1217 26.68 -11.44 0.0034 73 12 SLE 01-qp 8.159 -21.46 1217 26.68 -11.44 0.0034 73 12 SLE 01-qp 8.159 -21.46 1217 26.68 -11.44 0.0034 73 12 SLE 01-qp 8.159 -21.46 1217 26.68 -11.44 0.0034 73 12 SLE 01-qp 8.159 -21.46 1217 26.68 -11.44 0.0034 73 12 SLE 01-qp 8.159 -21.46 1217 26.68 -11.44 0.0034 73 12 SLE 01-qp 8.159 -21.46 1217 26.68 -11.44 0.0034 73 12 SLE 01-qp 8.159 -21.46 1217 26.68 -11.44 0.0034 73 12 SLE 01-qp 8.159 -21.46 1217 26.68 -11.44 0.0034 73 12 SLE 01-qp 8.159 -21.46 1217 26.68 -11.44 0.0034 73 12 SLE 01-qp 8.159 -21.46 1217 26.68 -11.44 0.0034 73 12 SLE 01-qp 8.159 -21.46 1217 26.68 -11.44 0.0034 73 12 SLE 01-qp 8.159 -21.46 1217 26.68 -11.44 0.0034 73 12 SLE 01-qp 8.159 -21.46 1217 26.68 -11.44 0.0034 73 12 SLE 01-qp 8.	56
73 2 SLV 02 -EX + 0.3 EY -66.552 -68.04 1607.3 150.66 -173.49 -7.346 73 2 SLV 02 -EX - 0.3 EY -66.63 -204.84 1396.7 528.66 -158.67 -21.44 73 2 SLV 02 0.3 EX + EY -1.051 241.06 1481.2 -697.24 10.72 27.82 73 2 SLV 02 -0.3 EX + EY -34.471 172.06 1652.8 -509.44 -82.28 19.18 73 2 SLV 02 0.3 EX - EY 18.689 -214.94 779.2 562.76 60.12 -19.17 73 2 SLV 02 -0.3 EX - EY 18.689 -214.94 779.2 562.76 60.12 -19.17 73 3 SLU 01 12.73 -33.68 1849 41.88 -17.86 -0.00012 73 4 SLU 02 12.77 -33.68 1855 41.88 -17.82 -0.00021 73 4 SLU 03 12.44 -25.05 1613 30.88 -14.62 0.0053 73 6 SLU 04: zona gialla10.44 -25.05 1613 30.88 -14.62 0.0053 73 7 SLU 05: incendio 8.149 -21.49 1216 26.76 -11.4 0.0033 73 7 SLU 05: incendio 8.885 -23.67 1315 29.47 -12.47 -8.15e- 73 9 SLE 02 rara8.885 -23.67 1315 29.47 -12.45 -9.616e- 73 10 SLE 03 rara8.895 -23.67 1317 29.47 -12.45 -9.616e- 73 11 SLE 01 rara8.329 -22 1242 27.37 -11.68 0.0024 73 12 SLE 01 rap8.159 -21.46 1217 26.68 -11.44 0.0034 73 12 SLE 01 rap	37
73 2 SLV 02 0.3 EX + EY -1.051 241.06 1481.2 -697.24 10.72 27.82 73 2 SLV 02 -0.3 EX + EY -34.471 172.06 1652.8 -509.44 -82.28 19.18 73 2 SLV 02 0.3 EX - EY 18.689 -214.94 779.2 562.76 60.12 -19.17 73 2 SLV 02 -0.3 EX - EY -14.731 -283.94 950.8 750.56 -32.88 -27.81 73 3 SLU 0112.73 -33.68 1849 41.88 -17.86 -0.00012 73 4 SLU 0212.7 -33.68 1855 41.88 -17.82 -0.00012 73 5 SLU 0310.44 -25.05 1613 30.88 -14.62 0.0053 73 6 SLU 04: zona gialla8.149 -21.49 1216 26.76 -11.4 0.0034 73 7 SLU 05: incendio8.159 -21.46 1217 26.68 -11.44 0.0034 73 9 SLE 02 rara8.885 -23.67 1315 29.47 -12.47 -8.15e 73 10 SLE 03 rara8.875 -23.67 1317 29.47 -12.45 -9.616e 73 10 SLE 03 rara7.376 -17.92 1154 22.14 -10.34 0.0036 73 12 SLE 01 rapa8.329 -22 1242 27.37 -11.68 0.0024 73 12 SLE 01 rapa8.159 -21.46 1217 26.68 -11.44 0.0034 73 12 SLE 01 rapa8.329 -22 1242 27.37 -11.68 0.0024 73 12 SLE 01 rapa8.159 -21.46 1217 26.68 -11.44 0.0034 0.0036 73 12 SLE 01 rapa8.329 -22 1242 27.37 -11.68 0.0024 73 12 SLE 01 rapa8.329 -22 1242 27.37 -11.68 0.0024 73 12 SLE 01 rapa8.159 -21.46 1217 26.68 -11.44 0.0034 0.0036 0.0066 0	34
73 2 SLV 02 0.3 EX - EY 18.689 -214.94 779.2 562.76 60.12 -19.17 73 2 SLV 02 -0.3 EX - EY -14.731 -283.94 950.8 750.56 -32.88 -27.81 73 3 SLU 01283.94 950.8 750.56 -32.88 -27.81 750.56 -0.00012 73 4 SLU 0212.73 -33.68 1849 41.88 -17.82 -0.00021 73 5 SLU 0310.44 -25.05 1613 30.88 -14.62 0.0053 73 6 SLU 04: zona gialla81.49 -21.49 1216 26.76 -11.4 0.0033 73 73 SLU 05: incendio81.59 -21.46 1217 26.68 -11.44 0.0034 73 8 SLE 01-rara8.885 -23.67 1315 29.47 -12.47 -8.15e- 73 10 SLE 03 rara8.875 -23.67 1317 29.47 -12.45 -9.616e- 73 10 SLE 03 rara8.875 -23.67 1317 29.47 -12.45 -9.616e- 73 11 SLE 01-freq8.329 -22 1242 27.37 -11.68 0.0024 73 12 SLE 01-gp8.159 -21.46 1217 26.68 -11.44 0.0034	37
73	53
73 6 SLU_04: zona gialla8.149 -21.49 1216 26.76 -11.4 0.0033 73 7 SLU_05: incendio8.159 -21.46 1217 26.68 -11.44 0.0034 73 8 SLE_01_rara8.885 -23.67 1315 29.47 -12.47 -8.15e- 73 9 SLE_02_rara8.875 -23.67 1317 29.47 -12.45 -9.616e- 73 10 SLE_03_rara7.376 -17.92 1154 22.14 -10.34 0.0036 73 11 SLE_01_freq8.329 -22 1242 27.37 -11.68 0.0024 73 12 SLE_01_qp8.159 -21.46 1217 26.68 -11.44 0.0034	29
73 8 SLE_01_rara	
73 10 SLE 03 rara7.376 -17.92 1154 22.14 -10.34 0.0036 73 11 SLE 01 freq8.329 -22 1242 27.37 -11.68 0.0024 73 12 SLE 01 qp8.159 -21.46 1217 26.68 -11.44 0.0034)5
73 12 SLE_01_qp8.159 -21.46 1217 26.68 -11.44 0.0034	38
/3 14 INVITUPPO (POS) 50.// 241.06 1833 /30.38 131.33 2/.82	23
73 15 Inviluppo (neg)66.82 -283.96 0 -697.24 -173.85 -27.81 73 16 Inviluppo66.82 -283.96 1855 750.58 -173.85 27.82	56
74 1 SLV 01 EX + 0.3 EY 70.41 191.68 887.3 -509.78 204.36 21.45 74 1 SLV 01 EX - 0.3 EY 40.83 68.68 718.7 -150.38 129.36 7.353	34
74 1 SLV 01 -EX + 0.3 EY -77.59 -20.32 1449.3 84.22 -179.64 -7.346 74 1 SLV 01 -EX - 0.3 EY -107.17 -143.32 1280.7 443.62 -254.64 -21.44	8
74 1 SLV_01 0.3 EX + EY 53.12 260.98 1280.7 -721.18 157.46 27.82 74 1 SLV_01 -0.3 EX + EY 8.72 197.38 1449.3 -542.98 42.26 19.18	34
74 1 SLV_01 0.3 EX - EY -45.48 -149.02 718.7 476.82 -92.54 -19.17 74 1 SLV_01 -0.3 EX - EY -89.88 -212.62 887.3 655.02 -207.74 -27.81	56
74 2 SLV_02 EX + 0.3 EY 74.13 191.72 861.3 -509.82 209.36 21.45 74 2 SLV_02 EX - 0.3 EY 44.55 68.72 692.7 -150.42 134.36 7.353	56
74 2 SLV_02 -EX + 0.3 EY -73.87 -20.28 1423.3 84.18 -174.64 -7.346 74 2 SLV_02 -EX - 0.3 EY -103.45 -143.28 1254.7 443.58 -249.64 -21.44	53
74 2 SLV 02 0.3 EX + EY 56.84 261.02 1254.7 -721.22 162.46 27.82 74 2 SLV 02 -0.3 EX + EY 12.44 197.42 1423.3 -543.02 47.26 19.18 74 2 SLV 02 0.3 EX - EY -41.76 -148.98 692.7 476.78 -87.54 -19.17	37
74 2 SLV 02 0.3 EX - EY -41.76 -148.98 692.7 476.78 -87.54 -19.17 74 2 SLV 02 -0.3 EX - EY -86.16 -212.58 861.3 654.98 -202.74 -27.81 74 3 SLU 0128.98 38.76 1672 -52.98 -39.65 -0.00012	53
74 4 SLU 0228.96 38.78 1675 -53 -39.63 -0.00021 74 5 SLU 0341.34 28.63 1554 -39.41 -56.05 0.0053	59
74 6 SLU 04: zona gialla18.37 24.16 1083 -33.01 -25.1 0.0033 74 7 SLU 05: incendio18.38 24.18 1084 -33.08 -25.14 0.0034	92
74 8 SLE_01_rara20.23 26.76 1183 -36.56 -27.67 -8.15e- 74 9 SLE_02_rara20.22 26.76 1184 -36.57 -27.66 -9.616e-	
74 10 SLE_03_rara28.47 19.99 1102 -27.51 -38.62 0.0036 74 11 SLE_01_freq18.83 24.81 1110 -33.94 -25.76 0.0024	55
74 12 SLE_01_qp18.38 24.18 1084 -33.08 -25.14 0.0034 74 14 Inviluppo (pos) 74.13 261.02 1675 655.02 209.36 27.82	37
74 15 Inviluppo (neg)107.17 -212.62 0 -721.22 -254.64 -27.81 74 16 Inviluppo107.17 261.02 1675 -721.22 -254.64 27.82 75 1 SLV 01 EX + 0.3 EY 86.66 88.703 151.68 -190.251 216.33 9.691	37
75 1 SLV 01 EX + 0.3 EY 86.66 88.703 151.68 -190.251 216.33 9.691 75 1 SLV 01 EX - 0.3 EY 38.12 25.703 120.72 -52.851 105.93 3.331 75 1 SLV 01 -EX + 0.3 EY -77.74 -16.497 225.88 39.749 -159.67 -3.328	55
75 1 SLV 01	15
75 1 SLV 01 -0.3 EX + EY 36.43 93.823 236.03 -201.051 100.73 8.648 75 1 SLV 01 0.3 EX - EY -76.05 -84.617 110.57 187.949 -154.47 -8.645	55
75 1 SLV_01	55
75 2 SLV_02 EX - 0.3 EY 41.72 25.716 96.42 -52.864 110.76 3.331 75 2 SLV_02 -EX + 0.3 EY -74.14 -16.484 201.58 39.736 -154.84 -3.328	35
75 2 SLV_02 -EX - 0.3 EY -122.68 -79.484 170.62 177.136 -265.24 -9.688 75 2 SLV_02 0.3 EX + EY 89.35 125.396 189.47 -270.064 218.36 12.55	17
75 2 SLV 02 -0.3 EX + EY 40.03 93.836 211.73 -201.064 105.56 8.648 75 2 SLV 02 0.3 EX - EY -72.45 -84.604 86.27 187.936 -149.64 -8.645 12.75 12.	35
75 2 SLV 02 -0.3 EX - EY -121.77 -116.164 108.53 256.936 -262.44 -12.55 75 3 SLU_0131.53 5.883 263.7 -8.478 -42.79 -5.558e- 75 4 SLU 0231.53 5.89 263.7 -8.49 -42.79 -9.806e-)5
75 5 SLU 0342 6.176 335.5 -8.795 -56.71 0.0024 75 6 SLU 04: zona gialla19.79 4.588 173.3 -6.519 -26.83 0.0015)2
75 7 SLU 05: incendio19.81 4.603 173.3 -6.551 -26.87 0.0015 75 8 SLE 01 rara22.19 4.564 189.3 -6.527 -30.11 -3.684e-	18
75 9 SLE 02 rara22.19 4.567 189.3 -6.531 -30.11 -4.347e- 75 10 SLE 03 rara29.17 4.755 237.2 -6.731 -39.39 0.0016)5
75 11 SLE_01_freq20.4 4.596 177.3 -6.548 -27.68 0.001 75 12 SLE_01_qp19.81 4.603 173.3 -6.551 -26.87 0.0015	11 18
75 14 Invīluppo (pos) 90.26 125.396 335.5 256.949 221.16 12.55 75 15 Inviluppo (neg)126.28 -116.177 0 -270.064 -270.07 -12.55	15
75 16 Inviluppo126.28 125.396 335.5 -270.064 -270.07 12.55 84 1 SLV 01 EX + 0.3 EY 65.88 92.8184 114.9 -226.757 163.37 21.45	34
84 1 SLV 01 EX - 0.3 EY 82.44 -4.3816 302.1 25.243 208.67 7.353 84 1 SLV 01 -EX + 0.3 EY -53.32 3.4184 1598.9 -26.757 -170.63 -7.346 84 1 SLV 01 -EX - 0.3 EY -36.76 -93.7816 1786.1 225.243 -125.33 -21.44	8
-	j. A.3

84	1 0137 01	0.3 EX + EY	4.84	174.928	415.9	-450.757	-6.38	27.8234
84	1 SLV_01 1 SLV 01	-0.3 EX + EY	-30.92	148.108	861.1		-106.58	19.1834
84	1 SLV_01 1 SLV 01	0.3 EX - EY	60.04	-149.072	1039.9	389.243	144.62	
84	1 SLV 01	-0.3 EX - EY	24.28	-175.892		449.243	44.42	
84	2 SLV 02	EX + 0.3 EY	65.88	92.8059		-226.724	163.37	21.4537
84	2 SLV 02	EX - 0.3 EY	82.44	-4.3941	302.1	25.2758	208.67	7.35366
84	2 SLV 02	-EX + 0.3 EY	-53.32	3.4059	1598.9	-26.7242	-170.63	-7.34634
84	2 SLV 02	-EX - 0.3 EY	-36.76	-93.7941	1786.1		-125.33	
84	2 SLV 02	0.3 EX + EY	4.84	174.916	415.9	-450.724	-6.38	27.8237
84	2 SLV 02	-0.3 EX + EY	-30.92	148.096	861.1	-390.724	-106.58	19.1837
84	2 SLV_02	0.3 EX - EY	60.04	-149.084	1039.9	389.276	144.62	-19.1763
84	2 SLV_02	-0.3 EX - EY	24.28	-175.904	1485.1	449.276	44.42	-27.8163
84	3 SLU_01		22.46	-1.384	1470	-0.4065		-0.0001229
84	4 SLU_02		22.42	-1.375	1476	-0.4273		-0.0002169
84	5 SLU_03		15.98	-0.1796	1238	-1.641		0.005313
84	6 SLU_04: zona gialla		14.39	-0.4606	969.9	-0.7395	18.82	0.003392
84 84	7 SLU_05: incendio 8 SLE 01 rara		14.56 15.68	-0.4816 -0.9961	950.5 1052	-0.757 -0.2245	19.02	0.003423 -8.15e-05
84	9 SLE 02 rara		14.56 15.68 15.68 15.66 11.38 14.8 14.86 82.44 -53.32 82.44 122.295 66.375 -69.305 -125.225 120.475 62.995 -65.925 -123.405 122.501 66.581 -69.099 -125.019 120.681 63.201 -65.719 -123.199 -2.349 -2.348 -2.806 -1.447	-0.9927	1054	-0.2317		-9.616e-05
84	10 SLE 03 rara		11 38	-0.1992	893.3	-1.034	14.81	0.003638
84	11 SLE 01 freq		14.8	-0.6312	977.1	-0.5959	19.33	0.002455
84	12 SLE 01 qp		14.56	-0.4816	950.5	-0.757		0.003423
84	14 Inviluppo (pos)		82.44	174.928	1786.1	449.276	208.67	27.8237
84	15 Inviluppo (neg)		-53.32	-175.904	0		-170.63	-27.8166
84	16 Inviluppo		82.44	-175.904	1786.1	-450.757	208.67	27.8237
86	1 SLV_01	EX + 0.3 EY	122.295	34.458	365.8	-74.68	263.728	9.69155
86	1 SLV_01	EX - 0.3 EY	66.375	3.618	349.24	-0.28	143.728	3.33155
86	1 SLV_01	-EX + 0.3 EY	-69.305	12.658	355.96	-22.28		-3.32845
86	1 SLV_01	-EX - 0.3 EY	-125.225	-18.182	339.4	52.12		-9.68845
86	1 SLV_01	0.3 EX + EY	120.475	62.808	381.676		259.528	12.5545
86	1 SLV_01	-0.3 EX + EY	62.995	56.268	378.724	-127.42	135.928	8.64855
86	1 SLV_01	0.3 EX - EI	-63.923	-39.992	326.476 323.524	104.86 120.58	-140.472 -264.072	-8.64545 -12.5515
86 86	1 SLV_01 2 SLV 02	-U.3 EA - EI	-123.403	-46.532 34.481	323.524	-74.71	264.072	9.69165
86	2 SLV_02 2 SLV 02	EX = 0.3 EV	122.301 66 581	3.641	293.74	-0.31	144.005	3.33165
86	2 SLV 02	-EX + 0 3 EY	-69 099	12.681	300.46	-22.31	-147.995	-3.32835
86	2 SLV 02	-EX - 0.3 EY	-125.019	-18.159	283.9		-267.995	-9.68835
86	2 SLV 02	0.3 EX + EY	120.681	62.831	326.176	-143.17	259.805	12.5547
86	2 SLV 02	-0.3 EX + EY	63.201	56.291	323.224	-127.45	136.205	8.64865
86	2 SLV 02	0.3 EX - EY	-65.719	-39.969	270.976	104.83	-140.195	-8.64535
86	2 SLV 02	-0.3 EX - EY	-123.199	-46.509	268.024	120.55	-263.795	-12.5513
86	3 SLU_01		-2.349	10.84	548.1	-15.13	-3.654	-5.558e-05
86	4 SLU_02		-2.348	10.85	548.1	-15.14		-9.806e-05
86	5 SLU_03		-2.806	10.53	708.1		-4.146	
86	6 SLU_04: zona gialla		-1.447	8.126	352.6		-2.233	0.001534
86	, pho_os. incendro		1.100	0.150	352.6	-11.28	-2.272	0.001548
86	8 SLE_01_rara		-1.653	8.247	389.9	-11.47		-3.684e-05
86	9 SLE_02_rara		-1.653	8.25	389.9			-4.347e-05
86	10 SLE_03_rara	 	-1.957 -1.513	8.033 8.167	496.5 361.9	-11.12 -11.33	-2.898 -2.348	0.001645 0.00111
86 86	11 SLE_01_freq 12 SLE 01 qp	==	-1.313	8.138	352.6	-11.28	-2.272	0.00111
86	14 Inviluppo (pos)		122.501	62.831	708.1	120.58	264.005	12.5547
86	15 Inviluppo (neg)	==	-125.225	-46.532	0		-268.272	-12.5515
86	16 Inviluppo		-125 225	62.831	708.1		-268.272	12.5547
91	1 SLV 01	EX + 0.3 EY	130.324	-9.997	-773.8	-16.435	215.748	-7.647
91	1 SLV 01	EX + 0.3 EY EX - 0.3 EY	197.524	-87.397	438.2	198.965	325.548	-24.087
91	1 SLV_01	-EX + 0.3 EY	-193.676	68.203	850.2	-179.035	-318.252	29.153
91	1 SLV_01	-EX - 0.3 EY	-126.476	-9.197	2062.2	36.365	-208.452	12.713
91	1 SLV_01	0.3 EX + EY	-61.476	107.673	-1619.4	-324.645	-99.252	24.413
91	1 SLV_01	-0.3 EX + EY	-158.676	131.133	-1132.2		-259.452	35.453
91		0.3 EX - EY	162.524	-150.327	2420.6	393.355	266.748	-30.387
91		-0.3 EX - EY	65.324 130.322	-126.867 -10.006	2907.8	344.575	106.548 215.745	-19.347
91 91	2 SLV_02 2 SLV 02	EX + 0.3 EY EX - 0.3 EY	130.322	-87.406	-773.6 438.4	-16.407 198.993	325.545	-7.647 -24.087
91	2 SLV_02 2 SLV_02	-EX + 0.3 EY		68.194	850.4		-318.255	29.153
91	2 SLV_02 2 SLV 02	-EX - 0.3 EY	-193.678 -126.478	-9.206	2062.4	-179.007 36.393	-208.455	12.713
91	2 SLV 02	0.3 EX + EY	-61.478	107.664	-1619.2	-324.617	-99.255	24.413
91	2 SLV 02	-0.3 EX + EY	-158.678	131.124	-1132		-259.455	35.453
91	2 SLV 02	0.3 EX - EY	162.522	-150.336	2420.8	393.383	266.745	-30.387
91	2 SLV 02	-0.3 EX - EY	65.322	-126.876	2908	344.603	106.545	-19.347
91	3 SLU_01		3.034	-16.62	957.8	17.15	5.694	4.359
91	4 SLU_02		3.037	-16.64	960.7	17.16	5.696	4.365
91	5 SLU_03		2.375	-11.87	849.4	12.27	4.442	3.135
91	6 SLU_04: zona gialla		1.974	-9.689	660	10.13	3.715	2.569
91	7 SLU_05: incendio		1.924	-9.597	644.2	9.965	3.648	2.533
91 91	8 SLE_01_rara		2.074 2.076	-11.73	692.6	12.16 12.16	3.947	3.098 3.101
91	9 SLE_02_rara 10 SLE 03 rara		2.076	-11.74 -8.557	693.7 618.5	8.895	3.95 3.116	2.279
91	11 SLE 01 freq		1.033	-10.2	657	10.59	3.721	2.693
91	12 SLE 01 qp		1 924	-9.597	644.2	9.965	3.648	2.533
91	14 Inviluppo (pos)		197.524	131.133	2908	393.383	325.548	35.453
91	15 Inviluppo (neg)		-193.678		-1619.4		-318.255	-30.387
91	16 Inviluppo		197.524	-150.336		393.383	325.548	35.453
93	1 SLV 01	EX + 0.3 EY	60.217	10.703	851.1	-36.944	155.363	21.4534
93	1 SLV_01	EX - 0.3 EY	79.297	-85.897	999.3	207.856	204.203	7.35342
93	1 SLV_01	-EX + 0.3 EY	-77.383	86.303	437.1	-211.144	-202.637	-7.34658
93	1 SLV_01	-EX - 0.3 EY	-58.303	-10.297	585.3	33.656	-153.797	-21.4466
93	1 SLV_01	0.3 EX + EY	-10.203	149.863	533.3		-26.9168	27.8234
93	1 SLV_01	-0.3 EX + EY	-51.483	172.543		-435.774	-134.317	19.1834
93	1 SLV_01	0.3 EX - EY	53.397	-172.137	1027.3	432.486	135.883	-19.1766
93	1 SLV_01	-0.3 EX - EY	12.117	-149.457	903.1	380.226	28.4832	-27.8166
93	2 SLV_02	EX + 0.3 EY	60.2168	10.6895	851.1	-36.909	155.363	21.4537
93	2 SLV_02	EX - U.3 EY	79.2968	-85.9105	999.3	207.891	204.203	7.35366
93	2 SLV_02	-EA + U.3 EY	-//.3832	86.2895	437.1		-202.637 -153.797	-7.34634
93 93	2 SLV_02 2 SLV 02	0 3 EX + EX	-30.3U32 -10 2022	-10.3105 149.85	585.3 533.3	33.691 -383.479	-153.797 -26.9174	-21.4463 27.8237
93	2 SLV_02 2 SLV 02	-0.3 EX + EV	-10.2032 -51 4832	172.529		-383.479 -435.739	-26.9174	19.1837
93	2 SLV_02 2 SLV 02	0.3 EX - EY	-J1.4032 53 3968	-172.15	1027.3	432.521	135.883	-19.1763
93	2 SLV_02 2 SLV 02	-0.3 EX - EY	12 1168	-149.471	903.1	380.261	28.4826	
93	3 SLU 01		1.75	-0.1691	1094	-1.998		-0.0001229
93	4 SLU 02		1.778	-0.1564	1100	-2.023		-0.0002169
93	5 SLU_03		2.074 2.076 1.635 1.959 1.924 197.524 -193.678 197.524 60.217 79.297 -77.383 -58.303 -10.203 -51.483 53.397 12.117 60.2168 79.2968 -77.3832 -58.3032 -10.2032 -51.4832 53.3968 12.1168 1.75 1.778	0.5702	942.8	-2.607	1.439	0.005313
93	6 SLU_04: zona gialla		1.194	0.2573	756.4	-1.67	1.124	0.003392
_			D 701 STD ST 01 DE 01 00					nag A 3-

93	7 SLU 05: incendio	==	0.957	0.203	718.2	-1.644	0.7832	0.003423	
93 93	8 SLE_01_rara 9 SLE_02_rara		1.322 1.336	-0.1394 -0.1338	786.7 789.5	-1.347	1.221	-8.15e-05 -9.616e-05	
93 93	10 SLE_03_rara 11 SLE_01_freq		1.176 1.07	0.3478 0.1006	683.7 736.5	-1.547	0.9209		
93 93	12 SLE_01_qp 14 Inviluppo (pos)		0.957 79.297	0.203 172.543			204.203	27.8237	
93 93	15 Inviluppo (neg) 16 Inviluppo		-77.3832 79.297	-172.15 172.543	1100	-435.774	-202.637 204.203		
95 95	1 SLV_01 1 SLV_01	EX + 0.3 EY EX - 0.3 EY	87.34 135.88	47.482 -5.258	1259.2 1883.2	10.679		21.4534 7.35342	
95 95	1 SLV_01 1 SLV_01	-EX + 0.3 EY -EX - 0.3 EY	-144.66 -96.12	-8.718 -61.458	271.2	4.879 199.279	-206.891	-21.4466	
95 95	1 SLV_01 1 SLV_01	0.3 EX + EY -0.3 EX + EY	-50.49 -120.09	89.342 72.482	-516.6	-344.511 -287.931	-257.291	19.1834	
95 95	1 SLV_01 1 SLV_01	0.3 EX - EY -0.3 EX - EY	111.31 41.71	-86.458 -103.318	1563.4	303.489	244.509 92.709	-27.8166	
95 95	2 SLV_02 2 SLV_02	EX + 0.3 EY EX - 0.3 EY	87.339 135.879	47.475 -5.265	1259.3 1883.3	10.706	299.107	21.4537 7.35366	
95 95 95	2 SLV_02 2 SLV_02	-EX + 0.3 EY	-144.661 -96.121	-8.725 -61.465	271.3	199.306	-311.893 -206.893 -105.493	-21.4463	
95 95 95	2 SLV_02 2 SLV_02 2 SLV_02	-0.3 EX + EY	-120.091 -111.300	89.335 72.475 -86.465		-287.904	-105.493 -257.293 244.507	27.8237 19.1837 -19.1763	
95 95	2 SLV_02 2 SLV_02 3 SLU 01	-0.3 EX - EY	79.297 87.34 135.88 -144.66 -96.12 -50.49 -120.09 111.31 41.71 87.339 135.879 -144.661 -96.121 -50.491 -120.091 111.309 41.709 -6.298 -6.304	-103.325 -10.88	1563.5	360.096	92.707	-27.8163 -0.0001229	
95 95	4 SLU_02 5 SLU 03	==	-6.304 -6.218	-10.88 -8.238	1120	10 00	0 007	-0.0001229 -0.0002169 0.005313	
95 95	6 SLU_04: zona gialla 7 SLU 05: incendio		-4.356 -4.39	-7.037 -6.988	790.8 765.2	7.888	-6.323 -6.391	0.003392	
95 95	8 SLE_01_rara 9 SLE_02_rara		-4.44 -4.441	-7.677 -7.681	810.3 812.5	8.937 7.888 7.779 8.524 8.525	-6.506 -6.507	-8.15e-05 -9.616e-05	
95 95	10 SLE_03_rara 11 SLE 01 freq		-4.381 -4.402	-5.917 -7.159	738.1 776.8	6.47	-6.328	0.003638	
95 95	12 SLE_01_qp 14 Inviluppo (pos)		-4.39 135.88	-6.988 89.342	765.2 2047.1	7.779 360.096		0.003423 27.8237	
95 95	15 Inviluppo (neg) 16 Inviluppo		-144.661 -144.661	-103.325 -103.325			-311.893 -311.893		
99 99	1 SLV_01 1 SLV_01	EX + 0.3 EY EX - 0.3 EY	129.928 201.328	45.953 5.753	899.3	-132.497 -19.697	356.42 547.22	7.35342	
99 99	1 SLV_01 1 SLV_01	-EX + 0.3 EY -EX - 0.3 EY	-218.072 -146.672	-11.247 -51.447		25.903 138.703	-380.78		
99 99	1 SLV_01 1 SLV_01	0.3 EX + EY -0.3 EX + EY	-75.172 -179.572	72.833 55.673	300	-208.657 -161.137	-469.38	27.8234 19.1834	
99	1 SLV_01 1 SLV_01	0.3 EX - EY -0.3 EX - EY	162.828 58.428	-61.167 -78.327	1704	167.343 214.863	166.62	-27.8166	
99 99	2 SLV_02 2 SLV_02	EX + 0.3 EY EX - 0.3 EY	129.925 201.325	45.949 5.749	899.3	-132.485 -19.685		7.35366	
99 99 99	2 SLV_02 2 SLV_02	-EX + 0.3 EY	-218.075 -146.675	-11.251 -51.451 72.829	1381.3		-571.59 -380.79 -190.99		
99 99	2 SLV_02 2 SLV_02 2 SLV 02	-0.3 EX + EY	41.709 -6.298 -6.304 -6.218 -4.356 -4.39 -4.441 -4.381 -4.402 -4.39 135.88 -144.661 -144.661 -129.928 201.328 -218.072 -146.672 -75.172 -179.572 162.828 58.428 129.925 201.325 -218.075 -146.675 -75.175 -179.575 -146.675 -75.175 -179.575 -146.828 -148.072 -75.175 -179.575 -146.675 -75.175 -179.575 -146.675 -75.175 -179.575 -146.675 -75.175 -179.575 -146.675 -75.175 -179.575 -146.675 -75.175 -179.575 -148.0	55.669 -61.171	300	-208.645 -161.125 167.355	-469.39	19.1837 -19.1763	
99	2 SLV_02 2 SLV_02 3 SLU 01	-0.3 EX - EY	58.425 -13.43	-78.331 -4.535	1704 1391	214.875	166.61	-27.8163 -0.0001229	
99 99	4 SLU_02 5 SLU_03	 	-13.43 -9.236	-4.517 -2.486	1395 1240	5.137	-19.48	-0.0002169 0.005313	
99	6 SLU_04: zona gialla 7 SLU 05: incendio		-8.352 -8.372	-2.75 -2.747	930.8 929.7 992.9	3.126	-12.1		
99 99	8 SLE_01_rara 9 SLE 02 rara		-9.428 -9.427	-3.139 -3.133	992.9 994.2	3.578 3.569	-13.68	-8.15e-05 -9.616e-05	
99 99	10 SLE_03_rara 11 SLE_01_freq		-6.63 -8.631	-1.785 -2.839	889.6 946	3.569 1.851 3.214	-9.778 -12.55	0.003638 0.002455	
99 99	12 SLE_01_qp 14 Inviluppo (pos)		-8.372 201.328	-2.747 72.833	929.7 1704	214.875	-12.18 547.22	0.003423 27.8237	
99 99	15 Inviluppo (neg) 16 Inviluppo		-218.075 -218.075	-78.331 -78.331	0 1704	-208.657 214.875	-571.59 -571.59	-27.8166 27.8237	
100 100	1 SLV_01 1 SLV_01	EX + 0.3 EY EX - 0.3 EY	91.264 144.664	98.241 21.441	-263.4 234.6	-240.678 -55.878	305.56 472.96	21.4534 7.35342	
100 100	1 SLV_01 1 SLV_01	-EX + 0.3 EY -EX - 0.3 EY	-160.736 -107.336	-29.359 -106.159	904.6 1402.6	65.322 250.122	-496.44 -329.04	-7.34658 -21.4466	
100	1 SLV_01 1 SLV_01	0.3 EX + EY -0.3 EX + EY	-59.236 -134.836	143.181	-435.6 -85.2	-349.178 -257.378	-170.44 -411.04	27.8234 19.1834	
100	1 SLV_01 1 SLV_01 2 SLV 02	0.3 EX - EY -0.3 EX - EY	118.764 43.164 91.269	-112.819 -151.099 98.237	1224.4 1574.8 -263.3	266.822 358.622 -240.666	387.56 146.96 305.56	-19.1766 -27.8166 21.4537	
100 100 100	2 SLV_02 2 SLV_02 2 SLV 02	EX + 0.3 EY EX - 0.3 EY -EX + 0.3 EY	144.669 -160.731	21.437 -29.363	234.7 904.7	-55.866 65.334	472.96 -496.44	7.35366 -7.34634	
100	2 SLV_02 2 SLV_02	-EX - 0.3 EY 0.3 EX + EY	-107.331 -59.231	-106.163 143.177	1402.7 -435.5	250.134 -349.166	-329.04 -170.44	-21.4463 27.8237	
100 100	2 SLV_02 2 SLV 02	-0.3 EX + EY 0.3 EX - EY	-134.831 118.769	104.897 -112.823	-85.1 1224.5	-257.366 266.834	-411.04 387.56	19.1837 -19.1763	
100 100	2 SLV_02 3 SLU 01	-0.3 EX - EY	43.169 -11.63	-151.103 -6.327	1574.9 836.1	358.634 7.568	146.96		
100 100	4 SLU_02 5 SLU_03		-11.63 -11.11	-6.32 -4.359	837.9 762.8	7.556 5.049	-17.12 -16.09	-0.0002169 0.005313	
100 100	6 SLU_04: zona gialla 7 SLU_05: incendio		-8.019 -8.036	-3.972 -3.959	569.8 569.6	4.759 4.722	-11.67 -11.74	0.003392 0.003423	
100 100	8 SLE_01_rara 9 SLE_02_rara		-8.181 -8.18	-4.411 -4.409	600.5 601.1	5.284 5.279	-12.04	-8.15e-05 -9.616e-05	
100	10 SLE_03_rara 11 SLE_01_freq		-7.835 -8.072	-3.104 -4.069	550.5 577.7	3.613 4.859	-11.36 -11.82	0.003638 0.002455	
100	12 SLE_01_qp 14 Inviluppo (pos)		-8.036 144.669	-3.959 143.181	569.6 1574.9	4.722 358.634	-11.74 472.96	0.003423 27.8237	
100 100 85	15 Inviluppo (neg) 16 Inviluppo 1 SLV 01	 EX + 0.3 EY	-160.736 -160.736 693.69	-151.103 -151.103 -61.98	-435.6 1574.9 -5017.5	-349.178 358.634 -24.9344	-496.44 -496.44 92.589	-27.8166 27.8237 -23.2556	
85 85	1 SLV_01 1 SLV_01 1 SLV 01	EX + 0.3 EY EX - 0.3 EY -EX + 0.3 EY	909.09 -962.31	-61.98 -440.58 474.02	-7807.5 8602.5	-24.9344 -2.0144 1.2656	110.409 -113.411	-23.2556 -30.0356 30.5444	
85 85	1 SLV_01 1 SLV_01 1 SLV 01	-EX + 0.3 EY -EX - 0.3 EY 0.3 EX + EY	-962.31 -746.91 -137.21	95.42 567.32	5812.5 3004.5	24.1856	-95.591 -0.300999	23.7644 3.4844	
85 85	1 SLV_01 1 SLV_01 1 SLV_01	-0.3 EX + EY 0.3 EX - EY	-137.21 -634.01 580.79	728.12 -694.68	7090.5 -6295.5	-34.6444 33.8956	-62.101 59.099	19.6244 -19.1156	
_	Commessa: CNAR.005-0		D.Z01.STR.ST.01.RE.01_00	_Relazion	Rev			pag. A.3-128	8
			e sulle strutture.doo	cm				I	

			83.99 693.72 909.12 -962.28 -746.88 -137.18 -633.98 580.82 84.02 -39.77 -39.91 -34.8 -26.73 -26.61 -28.75 -28.8 -25.36 -27.16 -26.61 909.12 -962.31 -962.31 -962.31 -962.31 -962.31 -962.31 -962.31 -962.31 -962.31 -963.31 -964.313 -965.31 -967.36 -2.16 -2.032 -257.408 -201.968 -164.313 -25.112 -25.12 -25.15 -2.522 -2.266 -2.312 -2.511 -2.512 -2.515 -2.522 -2.266 -2.312 -2.515 -2.522 -2.266 -2.312 -2.515 -2.522 -2.266 -2.312 -2.312 -2.515 -2.522 -2.266 -2.312 -2.312 -2.515 -2.522 -2.266 -2.312 -2.515 -2.522 -2.266 -2.312 -2.312 -2.515 -2.522 -2.266 -2.312 -2.515 -2.522 -2.266 -2.312 -2.312 -2.515 -2.522 -2.266 -2.312 -2.515 -2.522 -2.266 -2.312 -2.312 -2.515 -2.522 -2.266 -2.312 -2.312 -2.515 -2.522 -2.266 -2.312 -2.515 -2.522 -2.266 -2.312 -2.515 -2.522 -2.266 -2.312 -2.511 -2.					
85	1 SLV 01	-0.3 EX - EY	83.99	-533.88	-2209.5	41.7556	-2.701	-2.9756
85	2 SLV_02	EX + 0.3 EY	693.72	-62.01	-5017.9	-24.9322	92.591	-23.2561
85	2 SLV_02	EX - 0.3 EY	909.12	-440.61	-7807.9	-2.0122	110.411	-30.0361
85 85	2 SLV_02 2 SLV_02	-EX + U.3 EY	-962.28 -746.88	4/3.99	5812 1	24 1878	-113.409 -95 589	23 7639
85	2 SLV_02	0.3 EX + EY	-137.18	567.29	3004.1	-42.5022	-0.298999	3.4839
85	2 SLV_02	-0.3 EX + EY	-633.98	728.09	7090.1	-34.6422	-62.099	19.6239
85	2 SLV_02	0.3 EX - EY	580.82	-694.71	-6295.9	33.8978	59.101	-19.1161
85	3 SLU 01	-0.5 EA - EI	-39.77	24.32	592.9	-0.5495	-2.257	0.3883
85	4 SLU_02		-39.91	24.43	594.9	-0.5529	-2.264	0.3896
85	5 SLU_03		-34.8	22.23	519.2	-0.5146	-1.969	0.3339
85 85	6 SLU_U4: zona gialia 7 SLU 05: incendio		-26.73 -26.61	16.82	398.5	-0.373 -0.3744	-1.502 -1.501	0.255
85	8 SLE_01_rara		-28.75	17.89	429.2	-0.4038	-1.629	0.2773
85	9 SLE_02_rara		-28.8	17.93	429.9	-0.4048	-1.632	0.2779
85	10 SLE_03_rara		-25.36	16.42	378.8	-0.378	-1.433	0.2404
85	12 SLE 01_11eq 12 SLE 01 ap		-26.61	16.72	397.5	-0.3744	-1.501	0.2544
85	14 Inviluppo (pos)		909.12	728.12	8602.5	41.7578	110.411	30.5444
85	15 Inviluppo (neg)		-962.31	-694.71	-7807.9	-42.5044	-113.411	-30.0361
101	1 St.V 01	EX + 0.3 EY	-962.31 -206.592	-449.69	3340.1	13.3288	24.179	-12.09
101	1 SLV_01	EX - 0.3 EY	-262.032	-819.29	5488.1	30.1888	42.779	-7.968
101	1 SLV_01	-EX + 0.3 EY	257.408	782.31	-5099.9	-30.2712	-40.221	8.91
101	1 SLV_01 1 SLV_01	-EX - U.3 EY	201.968 20 488	412.71	-2951.9 -2119 9	-13.4112 -21 6012	-21.621 -20.061	13.032
101	1 SLV 01	-0.3 EX + EY	159.688	782.31	-4651.9	-34.6812	-39.381	-3.249
101	1 SLV_01	0.3 EX - EY	-164.312	-819.29	5040.1	34.5988	41.939	4.191
101	1 SLV_01	-0.3 EX - EY	-25.112	-449.69	2508.1	21.5188	22.619	10.491
101	2 SLV 02 2 SLV 02	EX - 0.3 EY	-262.033	-819.34	5488.4	30.1909	42.781	-7.9676
101	2 SLV_02	-EX + 0.3 EY	257.407	782.26	-5099.6	-30.2691	-40.219	8.9104
101	2 SLV_02	-EX - 0.3 EY	201.967	412.66	-2951.6	-13.4091	-21.619	13.0324
101	2 SLV_02 2 SLV_02	-0.3 EX + EY	20.487 159.687	782.26	-2119.6 -4651.6	-21.5991	-20.059	-3.2486
101	2 SLV_02	0.3 EX - EY	-164.313	-819.34	5040.4	34.6009	41.941	4.1914
101	2 SLV_02	-0.3 EX - EY	-25.113	-449.74	2508.4	21.5209	22.621	10.4914
101	3 SLU_01 4 St.		-3.43 -3.45	-27.36 -27.48	278.5	-0.05968	1.815	0.6716
101	5 SLU 03		-3.074	-24.11	253.4	-0.06046	1.668	0.6135
101	6 SLU_04: zona gialla		-2.364	-18.87	199.7	-0.03842	1.325	0.4848
101	7 SLU_05: incendio		-2.312	-18.49	194.1	-0.04123	1.279	0.471
101	9 SLE 02 rara		-2.522	-20.03	206.3	-0.04054	1.353	0.4984
101	10 SLE_03_rara		-2.266	-17.76	188.4	-0.04087	1.247	0.457
101	11 SLE_01_freq		-2.366	-18.89	197.2	-0.04066	1.297	0.4777
101	12 SLE_UI_qp 14 Inviluono (nos)		-2.312 257 408	-18.49 782 31	194.1	-0.04123 34 6009	1.279	13 0324
101	15 Inviluppo (neg)		-262.033	-819.34	-5099.9	-34.6812	-40.221	-12.09
101	16 Inviluppo		-262.033	-819.34	5488.4	-34.6812	42.781	13.0324
102	1 SLV_01 1 SLV_01	EX + 0.3 EY	827.44 613.84	404.85 72.45	7260.7	2.9356	111.764	-32.4588 -24.3588
102	1 SLV 01	-EX + 0.3 EY	-566.56	-41.15	-4319.3	-19.6644	-90.236	23.5412
102	1 SLV_01	-EX - 0.3 EY	-780.16	-373.55	-6677.3	-3.5244	-108.896	31.6412
102	1 SLV_01	0.3 EX + EY	588.74	636.55	5958.7	-23.8044	62.834	-22.3088
102	1 SLV_01 1 SLV_01	0.3 EX + E1	-123.26	-471.45	-1901.3	29.9956	0.634001	4.6912
102	1 SLV_01	-0.3 EX - EY	-541.46	-605.25	-5375.3	23.2156	-59.966	21.4912
102	2 SLV_02	EX + 0.3 EY	827.41	404.81	7260.4	2.9375	111.763	-32.4585
102	2 SLV_02	EX - 0.3 EY	613.81 -566 59	/2.41 _41 19	4902.4	19.07/5 -19.6625	93.103	-24.3585 23.5415
102	2 SLV 02	-EX - 0.3 EY	-780.19	-373.59	-6677.6	-3.5225	-108.897	31.6415
102	2 SLV_02	0.3 EX + EY	588.71	636.51	5958.4	-23.8025	62.833	-22.3085
102 102	2 SLV_02 2 SLV 02	-0.3 EX + EY 0.3 EX - EY	170.51 -123.29	502.71 -471.49	2484.4 -1901.6	-30.5825 29.9975	2.233 0.633001	-5.5085 4.6915
102	2 SLV 02 2 SLV 02	-0.3 EX - EY	-541.49	-605.29	-5375.6	23.2175	-59.967	21.4915
102	0 020_01		00.10	21.5	120.0	0.10.0	2.101	0.0207
102 102	4 SLU_02 5 SLU 03		35.26 30.93	22.01 20.64	428.7 383	-0.4104 -0.394	2.14 1.874	-0.6275 -0.5296
102	6 SLU 04: zona gialla		23.88	16.18	297	-0.3064	1.453	-0.4068
102	7 SLU_05: incendio		23.64	15.65	291.7	-0.2944	1.434	-0.4088
102 102	8 SLE_01_rara		25.45 25.5	16.26	311.5 312.3	-0.3027	1.542	-0.4462 -0.4467
102	9 SLE_02_rara 10 SLE 03 rara	==	25.5	16.31 15.37	281.3	-0.3039 -0.2925	1.546 1.366	-0.4467
102	11 SLE_01_freq		24.11	15.8	296.8	-0.2961	1.462	-0.4184
102	12 SLE_01_qp		23.64	15.65	291.7	-0.2944	1.434	-0.4088
102 102	14 Inviluppo (pos) 15 Inviluppo (neg)		827.44 -780.19	636.55 -605.29	7260.7 -6677.6	29.9975 -30.5844	111.764 -108.897	31.6415 -32.4588
102	16 Inviluppo		827.44	636.55	7260.7	-30.5844	111.764	-32.4588
103	1 SLV_01	EX + 0.3 EY	520.973	244.4	2082.3	-22.3828	37.2041	-19.7068
103 103	1 SLV_01 1 SLV_01	EX - 0.3 EY -EX + 0.3 EY	609.773 -601.027	-14.2 40.4	126.3 484.3	2.5172 -3.7828	32.6081 -32.3959	-11.9668 12.0932
103	1 SLV_01	-EX - 0.3 EY	-512.227	-218.2	-1471.7	21.1172	-36.9919	19.8332
103	1 SLV_01	0.3 EX + EY	24.673	474.7	3805	-44.9228	18.2061	-17.6068
103 103	1 SLV_01 1 SLV 01	-0.3 EX + EY 0.3 EX - EY	-311.927 320.673	413.5 -387.3	3325.6 -2715	-39.3428 38.0772	-2.6739 2.8861	-8.06682 8.19318
103	1 SLV_01	-0.3 EX - EY	-15.927	-448.5	-3194.4	43.6572	-17.9939	17.7332
103	2 SLV_02	EX + 0.3 EY	520.976	244.37	2082	-22.3796	37.2042	-19.7071
103 103	2 SLV_02 2 SLV 02	EX - 0.3 EY -EX + 0.3 EY	609.776 -601.024	-14.23 40.37	126 484	2.5204 -3.7796	32.6082 -32.3958	-11.9671 12.0929
103	2 SLV_02	-EX - 0.3 EY	-512.224	-218.23	-1472	21.1204	-36.9918	19.8329
103	2 SLV_02	0.3 EX + EY	24.676	474.67	3804.7	-44.9196	18.2062	-17.6071
103 103	2 SLV_02 2 SLV 02	-0.3 EX + EY 0.3 EX - EY	-311.924 320.676	413.47 -387.33	3325.3 -2715.3	-39.3396 38.0804	-2.6738 2.8862	-8.06708 8.19292
103	2 SLV_02 2 SLV 02	-0.3 EX - EY	-15.924	-387.33 -448.53	-2715.3 -3194.7	43.6604	-17.9938	17.7329
103	3 SLU_01		6.79	18.55	451.3	-0.9136	0.1595	0.0816
103	4 SLU_02		6.798 5.561	18.64	453	-0.9178	0.16	0.08199
103 103	5 SLU_03 6 SLU 04: zona gialla		5.561 4.28	17.31 13.35	399.7 308.4	-0.8398 -0.6377	0.1338 0.1073	0.0819 0.06798
103	7 SLU_05: incendio		4.373	13.1	305.3	-0.6328	0.1061	0.06318
103	8 SLE_01_rara	==	4.812	13.73	327.9	-0.6675	0.1139	0.06193
103_	9 SLE_02_rara		4.811	13.77	328.6	-0.6691	0.1141	0.06221
	Commessa: CNAR.005-0)1-01.22.DEF	D.Z01.STR.ST.01.RE.01_00		Rev	UU		pag. A.3-129
			e sulle strutture.do	LIII	I	I		I

103	10 SLE_03_rara		3.98	12.86	292.5	-0.6159	0.09659	0.06217
103	11 SLE_01_freq		4.486	13.25	311.1	-0.641		0.06276
103	12 SLE_01_qp	==	4.373	13.1	305.3	-0.6328		0.06318
103 103	14 Inviluppo (pos)		609.776	474.7 -448.53	3805 -3194.7	43.6604 -44.9228		19.8332 -19.7071
103	15 Inviluppo (neg) 16 Inviluppo		609 776	474.7	3805	-44.9228		19.8332
104	1 SLV 01	EX + 0.3 EY	176.655	261.11	-39.9	-29.3808		-16.236
104	1 SLV_01	EX - 0.3 EY	83.655	-76.69	1094.1	3.1992		-20.922
104	1 SLV_01	-EX + 0.3 EY	-91.345	37.11	-811.9	-2.7808		20.964
104	1 SLV_01	-EX - 0.3 EY	-184.345	-300.69	322.1	29.7992		16.278
104 104	1 SLV_01 1 SLV 01	0.3 EX + EY	191.355	576.81 509.61	-1633.1 -1864.7	-58.0808 -50.1008		2.25101 13.411
104	1 SLV_01	0.3 EX - EY	-118 645	-549.19	2146.9	50.5192		-13.369
104	1 SLV 01	-0.3 EX - EY	-199.045	-616.39	1915.3	58.4992		-2.20899
104	2 SLV_02	EX + 0.3 EY	176.654	261.07	-39.8	-29.3767		-16.2363
104	2 SLV_02	EX - 0.3 EY	83.654	-76.73	1094.2	3.2033		-20.9223
104 104	2 SLV_02	-EX + 0.3 EY	-91.346	37.07	-811.8 322.2	-2.7767 29.8033		20.9637 16.2777
104	2 SLV_02 2 SLV 02	-FY - 0.2 FI	-184.346 191.35 <i>4</i>	-300.73 576.77	-1633	-58.0767		2.25065
104	2 SLV 02	-0.3 EX + EY	110.954	509.57	-1864.6	-50.0967		13.4107
104	2 SLV_02	0.3 EX - EY	-118.646	-549.23	2147	50.5233		-13.3694
104	2 SLV_02	-0.3 EX - EY	-199.046	-616.43	1915.4	58.5033		-2.20935
104 104	3 SLU_01		-5.932	-29.49	204.8	0.3084		0.03368
104	4 SLU_02 5 SLU 03		-5.943 -5.025	-29.6 -25.68	205.6 183.9	0.309 0.2576		0.03328 0.02323
104	6 SLU 04: zona gialla		-3.751	-20.04	143.5	0.2183		0.01902
104	7 SLU 05: incendio		-3.845	-19.79	141.1	0.2092		0.02101
104	8 SLE_01_rara		-4.259	-21.44	150.5	0.2314		0.02225
104	9 SLE_02_rara		-4.258	-21.48	150.8	0.2317		0.02204
104 104	10 SLE_03_rara 11 SLE 01 freq		-3.638	-18.84 -20.23	136.1 143.5	0.1972 0.2158		0.01541 0.02122
104	12 SLE 01 qp		-3.845	-19.79	141.1	0.2136		0.02122
104	14 Inviluppo (pos)		191.355	576.81	2147	58.5033		20.964
104	15 Inviluppo (neg)		4.373 609.776 -601.027 609.776 176.655 83.655 -91.345 -184.345 191.355 110.955 -118.645 -199.046 -184.346 191.354 110.954 -118.646 -199.046 -5.932 -5.943 -5.025 -3.751 -3.845 -4.259 -4.258 -3.638 -3.954 -19.355 -199.046	-616.43	-1864.7	-58.0808	-3.37622	-20.9223
104	16 Inviluppo		-199.046	-616.43	2147	58.5033		20.964
105 105	1 SLV_01 1 SLV 01	EX + 0.3 EY	-276.821	853.06 412.66	-5933.9 -3365.9	-39.4686 -12.2286		-6.8181 -8.9721
105	1 SLV_01	EX - 0.3 EY -EX + 0.3 EY -EX - 0.3 EY	215.179	-474.94	3986.1	13.3314		7.8219
105	1 SLV 01	-EX - 0.3 EY	285.979	-915.34	6554.1	40.5714		5.6679
105		0.3 EX + EY	-187.221	902.06	-5457.9	-52.7686	41.071	0.8189
105		-0.3 EX + EY	-39.621	503.66	-2481.9	-36.9286		5.2109
105	1 SLV_01	0.3 EX - EY	48.779	-565.94	3102.1	38.0314		-6.3611
105 105		-0.3 EX - EY EX + 0.3 EY	196.3/9 -276.815	-964.34 853.02	6078.1 -5933.7	53.8714 -39.4659		-1.9691 -6.8183
105		EX - 0.3 EY	-206.015	412.62	-3365.7	-12.2259		-8.9723
105		-EX + 0.3 EY	215.185	-474.98	3986.3	13.3341		7.8217
105		-EX - 0.3 EY	285.985	-915.38	6554.3	40.5741		5.6677
105	2 SLV_02	0.3 EX + EY	-187.215	902.02	-5457.7	-52.7659		0.8187
105 105		-0.3 EX + EY 0.3 EX - EY	-39.615 48.785	503.62 -565.98	-2481.7 3102.3	-36.9259 38.0341		5.2107 -6.3613
105		-0.3 EX - EY	196.385	-964.38	6078.3	53.8741		-1.9693
105	3 SLU 01		6.759	-46.84	458.4	0.8287		-0.8434
105	4 SLU_02		-199.046 -199.046 -276.821 -206.021 215.179 285.979 -187.221 -39.621 48.779 196.379 -276.815 -206.015 215.185 285.985 -187.215 -39.615 48.785 196.385 6.759 6.781 5.888 4.649 4.579 4.915	-46.95	459.8	0.8296		-0.8463
105	5 SLU_03		5.888	-40.06	402	0.6935		-0.7457
105 105	6 SLU_04: zona gialla		4.649	-31.22	312	0.5543		-0.5812 -0.5751
105	7 SLU_05: incendio 8 SLE 01 rara		4.579	-31.14 -33.76	310.1 333.8	0.5514		-0.5751
105	9 SLE 02 rara	==	4.924	-33.8	334.3	0.5985		-0.6177
105	10 SLE_03_rara		4.323	-29.17	295.3	0.5073		-0.5496
105	11 SLE_01_freq		4.667	-31.83	316.3	0.5639		-0.5858
105	12 SLE_01_qp		4.579	-31.14	310.1	0.5514		-0.5751
105 105	14 Inviluppo (pos)	 	285.985 -276.821	902.06 -964.38	6554.3 -5933.9	53.8741 -52.7686		7.8219 -8.9723
105	15 Inviluppo (neg) 16 Inviluppo	==	285.985	-964.38	6554.3	53.8741		-8.9723
204	1 SLV 01	EX + 0.3 EY	725.199	4.6503	-771.8		1.06853e-05	-7.5607
204	1 SLV_01	EX - 0.3 EY	848.799	-16.8897	-2547.8	6.8367	1.19993e-05	-2.5507
204	1 SLV_01	-EX + 0.3 EY	-854.801	18.3503	3048.2		-1.21147e-05	2.7593
204 204	1 SLV_01 1 SLV 01	-EX - 0.3 EY 0.3 EX + EY	-731.201 27.999	-3.1897 34.5753	1272.2		-1.08007e-05 1.17231e-06	7.7693 -9.7937
204	1 SLV 01	-0.3 EX + EY	-446.001	38.6853			-5.66769e-06	-6.6977
204	1 SLV 01	0.3 EX - EY	439.999	-37.2247	-3282.8		5.55231e-06	6.9063
204	1 SLV_01	-0.3 EX - EY	-34.001	-33.1147	-2136.8		-1.28769e-06	10.0023
204		EX + 0.3 EY	725.206	4.6473	-772		1.06854e-05	-7.5607
204 204	2 SLV_02 2 SLV 02	EX - 0.3 EY -EX + 0.3 EY	848.806 -854.794	-16.8927 18.3473	-2548 3048		1.19994e-05 -1.21146e-05	-2.5507 2.7593
204		-EX - 0.3 EY	-731.194	-3.1927	1272		-1.08006e-05	7.7693
204	2 SLV_02	0.3 EX + EY	28.006	34.5723	2637		1.17238e-06	-9.7937
204	2 SLV_02	-0.3 EX + EY	-445.994	38.6823			-5.66762e-06	-6.6977
204	2 SLV_02	0.3 EX - EY	440.006	-37.2277	-3283		5.55238e-06	6.9063
204	2 SLV_02 3 SLU 01	-0.3 EX - EY	-33.994 -4.179	-33.1177 1.05	-2137 372.8		-1.28762e-06 -8.65e-08	10.0023 0.147
204	4 SLU 02	==	-4.213	1.054	374.1		-8.679e-08	0.1471
204	5 SLU_03		-4.087	0.973	327	-1.146	-7.599e-08	0.1282
204	6 SLU_04: zona gialla		-3.182	0.7385	251.5		-5.767e-08	0.1073
204	7 SLU_05: incendio		-3.001	0.7303	250.2		-5.769e-08	0.1043
204 204	8 SLE_01_rara 9 SLE 02 rara		-3.138 -3.156	0.768 0.7697	269.9 270.4		-6.267e-08 -6.276e-08	0.1065 0.1067
204	10 SLE 03 rara		-3.136	0.7143	238.6	-0.8329	-5.546e-08	0.09418
204	11 SLE_01_freq		-3.039	0.7394	255.3	-0.8668	-5.9e-08	0.1047
204	12 SLE_01_qp	==	-3.001	0.7303	250.2	-0.8533	-5.769e-08	0.1043
204	14 Inviluppo (pos)		848.806	38.6853	3783.2		1.19994e-05	10.0023
204 204	15 Inviluppo (neg) 16 Inviluppo		-854.801 -854.801	-37.2277 38.6853			-1.21147e-05 -1.21147e-05	-9.7937 10.0023
214	1 SLV 01	EX + 0.3 EY	81.742	825.4		-70.2033 -1.20112e-		10.6401
214	1 SLV_01	EX - 0.3 EY	65.002	372.4		-4.3124e-0		16.5981
214	1 SLV_01	-EX + 0.3 EY	-71.058	-404.6	8497.7	5.6876e-07	-140.051	-16.9599
214	1 SLV_01	-EX - 0.3 EY	-87.798	-857.6			5 -158.531	-11.0019
214 214	1 SLV_01 1 SLV 01	0.3 EX + EY -0.3 EX + EY	47.792 1.952	923.4 554.4		-2.11182e- -1.73442e-		-5.9709 -14.2509
214	1 SLV_01 1 SLV 01	-0.3 EX + EY 0.3 EX - EY	-8.008	-586.6		1.74818e-0		13.8891
214	1 SLV_01	-0.3 EX - EY	-53.848	-955.6	1434.7	2.12558e-0	5 -77.891	5.6091
214	2 SLV_02	EX + 0.3 EY	81.741	825.38	-6742.4	-1.201e-05	151.948	10.6403
214	2 SLV_02	EX - 0.3 EY	65.001	372.38		-4.2999e-0	7 133.468	16.5983
	Commessa: CNAR.005-0)1-01.22.DEF	D.Z01.STR.ST.01.RE.01_00	_Relazion	Rev	00		pag. A.3-130
			e sulle strutture.do	cm				

214	2 SLV 02	-EX + 0.3 EY	-71.059	-404.62	8497.6	5.7001e-07	-140.052	-16.9597
214	2 SLV_02	-EX - 0.3 EY	-87.799	-857.62	7699.6	1.215e-05	-158.532	-11.0017
214	2 SLV_02	0.3 EX + EY	47.791	923.38		-2.1117e-05		-5.9707
214	2 SLV_02	-0.3 EX + EY	1.951	554.38		-1.7343e-05		-14.2507
214 214	2 SLV_02 2 SLV 02	0.3 EX - EY -0.3 EX - EY	-8.009 -53.849	-586.62 -955.62		1.7483e-05 2.1257e-05	9.708 -77.892	13.8893 5.6093
214	3 SLU 01	U.J EA EI	-4.5	-25.21		1.045e-07	-4.903	-0.2654
214	4 SLU 02		-4.516	-25.24		1.042e-07	-4.918	-0.2666
214	5 SLU_03		-3.94	-20.33	623	7.867e-08	-4.273	-0.2383
214	6 SLU_04: zona gialla		-3.048	-16		7.031e-08	-3.301	-0.1832
214	7 SLU_05: incendio		-3.028	-16.1		6.876e-08	-3.291	-0.1809
214 214	8 SLE_01_rara 9 SLE 02 rara		-3.272 -3.277	-17.74 -17.75	516.1	7.514e-08 7.504e-08	-3.558 -3.563	-0.1945 -0.195
214	10 SLE 03 rara		-2.889	-14.47		5.811e-08	-3.128	-0.1758
214	11 SLE 01 freq		-3.092	-16.53		7.058e-08	-3.361	-0.1844
214	12 SLE_01_qp		-3.028	-16.1	478.7	6.876e-08	-3.291	-0.1809
214	14 Inviluppo (pos)	==	81.742	923.4		2.1257e-05	151.949	16.5983
214 214	15 Inviluppo (neg) 16 Inviluppo		-87.799 -87.799	-955.62 -955.62		-2.11182e-0 2.1257e-05	5 -158.532 -158.532	
214	1 SLV 01	EX + 0.3 EY	668.5	23.843	2580.7		9.61634e-06	-8.9293
216	1 SLV 01	EX - 0.3 EY	564.1		1134.7		8.50034e-06	-3.2953
216	1 SLV_01	-EX + 0.3 EY	-543.5	2.243	-779.3	-5.9815	-8.36366e-06	3.3307
216	1 SLV_01	-EX - 0.3 EY	-647.9	-21.517	-2225.3		-9.47966e-06	8.9647
216	1 SLV_01	0.3 EX + EY	366.1	44.003	3091.7		4.62534e-06	-11.2113
216 216	1 SLV_01 1 SLV 01	-0.3 EX + EY 0.3 EX - EY	2.5 18.1	37.523 -35.197	2083.7 -1728.3		-7.6866e-07 9.0534e-07	-7.5333 7.5687
216	1 SLV 01	-0.3 EX - EY	-345.5	-41.677	-2736.3		-4.48866e-06	11.2467
216	2 SLV 02	EX + 0.3 EY	668.5	23.84	2580.5		9.61632e-06	-8.9295
216	2 SLV_02	EX - 0.3 EY	564.1	0.08	1134.5		8.50032e-06	-3.2955
216	2 SLV_02	-EX + 0.3 EY	-543.5	2.24	-779.5		-8.36368e-06	3.3305
216 216	2 SLV_02 2 SLV 02	-EX - 0.3 EY 0.3 EX + EY	-647.9 366.1	-21.52 44	-2225.5 3091.5		-9.47968e-06 4.62532e-06	8.9645 -11.2115
216	2 SLV_02 2 SLV 02	-0.3 EX + EY	2.5	37.52	2083.5		-7.6868e-07	-7.5335
216	2 SLV 02	0.3 EX - EY	18.1	-35.2	-1728.5		9.0532e-07	7.5685
216	2 SLV_02	-0.3 EX - EY	-345.5	-41.68	-2736.5		-4.48868e-06	11.2465
216	3 SLU_01 4 SLU 02		15.62	1.676	262.3		1.015e-07	0.02492
216 216	4 SLU_02 5 SLU 03		15.66 13.31	1.682 1.521	263.4 233		1.019e-07 8.901e-08	0.02503 0.02166
216	6 SLU 04: zona gialla		10.26	1.178	179.9		6.931e-08	0.02100
216	7 SLU 05: incendio		10.3	1.163	177.7		6.834e-08	0.0177
216	8 SLE_01_rara		11.21	1.226	190.6		7.345e-08	0.01736
216	9 SLE_02_rara		11.22	1.228	191.1		7.363e-08	0.01752
216	10 SLE_03_rara		9.639	1.119	170.6		6.493e-08	0.01537
216 216	11 SLE_01_freq 12 SLE 01 qp		10.54 10.3	1.178 1.163	181 177.7	-0.9645	6.965e-08 6.834e-08	0.01759 0.0177
216	14 Inviluppo (pos)		668.5	44.003	3091.7		9.61634e-06	11.2467
216	15 Inviluppo (neg)		-647.9	-41.68	-2736.5		-9.47968e-06	-11.2115
216	16 Inviluppo		668.5	44.003	3091.7	-62.7715	9.61634e-06	11.2467
239	1 SLV_01	EX + 0.3 EY	22.421	290.12		-6.15606e-0		6.95905
239	1 SLV_01	EX - 0.3 EY	12.401	-59.68		1.28394e-06		9.50305
239 239	1 SLV_01 1 SLV 01	-EX + 0.3 EY -EX - 0.3 EY	-11.979 -21.999	36.12 -313.68		-1.31606e-0 6.12394e-06		-9.36095 -6.81695
239	1 SLV 01	0.3 EX + EY	22.071	609.32		-1.31421e-0		-1.72095
239	1 SLV 01	-0.3 EX + EY	11.751	533.12		-1.16901e-0		-6.61695
239	1 SLV_01	0.3 EX - EY	-11.329	-556.68	542.2	1.16579e-05	19.2008	6.75905
239	1 SLV_01	-0.3 EX - EY	-21.649	-632.88		1.31099e-05		1.86305
239	2 SLV_02	EX + 0.3 EY	22.4212	290.08		-6.1551e-06		6.95898
239 239	2 SLV_02 2 SLV 02	EX - 0.3 EY -EX + 0.3 EY	12.4012 -11.9788	-59.72 36.08		1.2849e-06 -1.3151e-06	40.4879 -40.326	9.50298 -9.36102
239	2 SLV 02 2 SLV 02	-EX - 0.3 EY	-21.9988	-313.72		6.1249e-06		
239	2 SLV 02	0.3 EX + EY	22.0712	609.28		-1.31411e-0		-1.72102
239	2 SLV_02	-0.3 EX + EY	11.7512	533.08	2.39996	-1.16891e-0		-6.61702
239	2 SLV_02	0.3 EX - EY	-11.3288	-556.72		1.16589e-05		6.75898
239	2 SLV_02	-0.3 EX - EY	-21.6488	-632.92		1.31109e-05		1.86298
239 239	3 SLU_01 4 SLU 02		0.3136 0.3142	-18.52 -18.57		-2.059e-08 -2.083e-08	0.1111 0.112	0.1086 0.1088
239	5 SLU 03		0.2625	-15.12		-2.496e-08	0.1036	0.09233
239	6 SLU_04: zona gialla		0.2128	-11.78		-1.53e-08		0.07016
239	7 SLU_05: incendio		0.211	-11.78			0.0808	0.07105
239	8 SLE_01_rara		0.2246	-13.16			0.08251	0.07776
239 239	9 SLE_02_rara 10 SLE 03 rara		0.2249 0.1903	-13.17 -10.86		-1.465e-08 -1.733e-08	0.083 0.07738	0.07779 0.06668
239	11 SLE 01 freq	==	0.1903	-12.15		-1.547e-08		0.07278
239	12 SLE_01_qp		0.211	-11.78	272.3	-1.606e-08	0.0808	0.07105
239	14 Inviluppo (pos)	==	22.4212	609.32		1.31109e-05		9.50305
239 239	15 Inviluppo (neg) 16 Inviluppo		-21.999 22.4212	-632.92 -632.92			5 -40.3262 5 40.4879	
239	1 SLV 01	EX + 0.3 EY		-632.92 -375.637		-1.31421e-0 -1.3677e-07		9.50305 17.0535
241	1 SLV 01	EX - 0.3 EY		-763.837		1.01232e-05		11.8035
241	1 SLV_01	-EX + 0.3 EY	-73.64	748.363	-7068.9	-1.02168e-0	5 -144.918	-11.3465
241	1 SLV_01	-EX - 0.3 EY	-57.62	360.163			-126.618	
241	1 SLV_01	0.3 EX + EY	-3.67	470.663		-1.56348e-0		13.2385
241 241	1 SLV_01 1 SLV 01	-0.3 EX + EY 0.3 EX - EY	-44.59 49.73	807.863 -823.337		-1.86588e-0	5 -69.668 74.132	4.7185 -4.2615
241		-0.3 EX - EY		-823.337 -486.137		1.85652e-05 1.55412e-05		-4.2615 -12.7815
241	2 SLV 02	EX + 0.3 EY		-375.677		-1.3538e-07		17.0531
241	2 SLV_02	EX - 0.3 EY	78.781	-763.877	7777.1	1.01246e-05	149.383	11.8031
241	2 SLV_02	-EX + 0.3 EY	-73.639	748.323	-7068.9	-1.02154e-0	5 -144.917	-11.3469
241	2 SLV_02	-EX - 0.3 EY	-57.619	360.123			-126.617	
241 241	2 SLV_02 2 SLV 02	0.3 EX + EY -0.3 EX + EY	-3.669 -44.589	470.623 807.823		-1.56334e-0 -1.86574e-0		13.2381 4.7181
241		0.3 EX - EY		-823.377		1.85666e-05		-4.2619
241		-0.3 EX - EY		-486.177		1.55426e-05		-12.7819
241	3 SLU_01		3.764	-12.88	513	-6.612e-08	3.226	0.3366
241	4 SLU_02		3.779	-12.92		-6.648e-08	3.242	0.3381
241	5 SLU_03		3.335	-10.04		-6.563e-08	2.919	0.3014
241 241	6 SLU_04: zona gialla 7 SLU 05: incendio		2.614 2.57	-7.58 -7.737		-4.614e-08 -4.677e-08	2.294 2.232	0.2325 0.2285
241	8 SLE 01 rara		2.744	-8.999		-4.661e-08	2.232	0.2455
241	9 SLE_02_rara		2.75	-9.01		-4.675e-08	2.378	0.2461
241	10 SLE_03_rara	==	2.45	-7.074	342.8	-4.61e-08	2.159	0.2212
241	11 SLE_01_freq	==	2.615	-8.084		-4.644e-08	2.268	0.2329
241	12 SLE_01_qp		2.57	-7.737		-4.677e-08	2.232	0.2285
	Commessa: CNAR.005-0)1-01.22.DEF	D.Z01.STR.ST.01.RE.01_00_		Rev	00		pag. A.3-131
			e sulle strutture.docn	n				

241	14 Inviluppo (pos)		78.781 807.8	3 7777.1 1.85666	5e-05 149.383	17.0535
241	15 Inviluppo (neg)		-73.64 -823.3		88e-05 -144.918	
241	16 Inviluppo		78.781 -823.3	7 7777.1 -1.8658	88e-05 149.383	17.0535
313	1 SLV_01	EX + 0.3 EY	455.01 -51.4	9 129.2 1.8	3576 3.53123e-06	
313	1 SLV_01	EX - 0.3 EY	722.01 -105.5		176 4.74323e-06	-8.07153
313		-EX + 0.3 EY	-680.99 101.3		3424 -4.62877e-06	
313		-EX - 0.3 EY	-413.99 47.2		3993 -3.41677e-06	
313	1 SLV_01	0.3 EX + EY	-254.09 65.1		5324 -7.3877e-07	
313 313		-0.3 EX + EY	-594.89 111.0		3924 -3.18677e-06	
313		0.3 EX - EY -0.3 EX - EY	635.91 -115.2 295.11 -69.3		5676 3.30123e-06 3076 8.5323e-07	6.31347 12.9135
313		EX + 0.3 EY	455.03 -51.4		3641 3.53137e-06	-13.8011
313		EX - 0.3 EY	722.03 -105.5		1241 4.74337e-06	-8.07115
313		-EX + 0.3 EY	-680.97 101.3		3359 -4.62863e-06	
313		-EX - 0.3 EY	-413.97 47.2	5 141.4 -0.0758	3993 -3.41663e-06	13.9289
313	2 SLV_02	0.3 EX + EY	-254.07 65.1	5 -2232.4 -73.5	5259 -7.3863e-07	-12.7861
313		-0.3 EX + EY	-594.87 111.0		3859 -3.18663e-06	
313		0.3 EX - EY	635.93 -115.2		5741 3.30137e-06	6.31385
313		-0.3 EX - EY	295.13 -69.3		3141 8.5337e-07	12.9139
313 313	3 SLU_01 4 SLU 02	== ==	29.55 -3.1 29.69 -3.		.306 7.872e-08 .311 7.926e-08	0.09644 0.09642
313	5 SLU 03		26.93 -2.7		.142 7.5e-08	0.07945
313	6 SLU 04: zona gialla		20.99 -2.1		9132 6.067e-08	0.06377
313	7 SLU 05: incendio		20.51 -2.0		3876 5.723e-08	0.06347
313	8 SLE 01 rara		21.86 -2.2		9633 5.935e-08	0.06969
313	9 SLE_02_rara		21.91 -2.		9655 5.963e-08	0.06965
313	10 SLE_03_rara		20.03 -2.0		3518 5.671e-08	0.0583
313	11 SLE_01_freq		20.86 -2.1		9086 5.779e-08	0.06517
313 313	12 SLE_01_qp		20.51 -2.0 722.03 111.0		3876 5.723e-08	0.06347
313	14 Inviluppo (pos) 15 Inviluppo (neg)		-680.99 -115.2		5741 4.74337e-06 3924 -4.62877e-06	13.9289 -13.8015
313	16 Inviluppo (neg)	==	722.03 -115.2		5741 4.74337e-06	13.9289
316	1 SLV 01	EX + 0.3 EY	303.437 56.4		.994 3.64151e-06	-7.09814
316	1 SLV 01	EX - 0.3 EY	115.037 -2.6		.906 4.63151e-06	-11.7121
316	1 SLV_01	-EX + 0.3 EY	-120.563 -2.5	9 -3269.8 -52	.594 -4.53849e-06	11.8219
316	1 SLV_01	-EX - 0.3 EY	-308.963 -61.6		.306 -3.54849e-06	
316	1 SLV_01	0.3 EX + EY	374.837 104.6		.904 -3.7649e-07	4.90686
316	1 SLV_01	-0.3 EX + EY	247.637 86.9		.784 -2.83049e-06	
316	1 SLV_01	0.3 EX - EY	-253.163 -92.1 -380.363 -109.8		.096 2.92351e-06 .216 4.6951e-07	-10.4731 -4.79714
316 316	1 SLV_01 2 SLV 02	EX + 0.3 EY	-380.363 -109.8 303.423 56.4			-7.09862
316	2 SLV 02	EX = 0.3 EV	115.023 -2.6		.914 4.63161e-06	-11.7126
316	2 SLV 02	-EX + 0.3 EY	-120.577 -2.5		.586 -4.53839e-06	
316	2 SLV 02	-EX - 0.3 EY	20.03 -2.0 20.86 -2.1 20.51 -2.0 722.03 111.0 -680.99 -115.2 722.03 -115.2 303.437 56.4 115.037 -2.6 -120.563 -2.5 -308.963 -61.6 374.837 104.6 247.637 86.9 -253.163 -92.1 -380.363 -109.8 303.423 56.4 115.023 -2.6 -120.577 -2.5 -308.977 -61.6 374.823 104.6 247.623 86.9 -253.177 -92.1 -380.377 -109.8 303.423 56.4 -3.887 -3.7 -3.887 -3.7 -3.905 -3.8 -3.401 -3.3 -2.957 -2.6		314 -3.54839e-06	
316	2 SLV_02	0.3 EX + EY	374.823 104.6	3 -2338.5 -87	.896 -3.7639e-07	4.90638
316	2 SLV_02	-0.3 EX + EY	247.623 86.9		.776 -2.83039e-06	
316	2 SLV_02	0.3 EX - EY	-253.177 -92.1		.104 2.92361e-06	-10.4736
316	2 SLV_02	-0.3 EX - EY	-380.377 -109.8		.224 4.6961e-07	-4.79762
316 316	3 SLU_01 4 SLU 02		-3.887 -3.7 -3.905 -3.8		1.68 6.308e-08 .687 6.355e-08	0.08098 0.08115
316	5 SLU 03		-3.905 -3.6 -3.401 -3.3		.488 6.101e-08	0.08115
316	6 SLU 04: zona gialla		-2.957 -2.6		.194 4.971e-08	0.0547
316	7 SLU 05: incendio		-2.763 -2.5		.156 4.651e-08	0.05486
316	8 SLE 01 rara		-2.86 -2.		.246 4.782e-08	0.05805
316	9 SLE_02_rara		-2.873 -2.7	7 155.3 1.	.249 4.807e-08	0.05809
316	10 SLE_03_rara		-2.538 -2.5		.114 4.632e-08	0.05227
316	11 SLE_01_freq		-2.787 -2.		.181 4.685e-08	0.05561
316	12 SLE_01_qp	==	-2.763 -2.5		.156 4.651e-08	0.05486
316	14 Inviluppo (pos)		374.837 104.6		.104 4.63161e-06	11.8219
316 316	15 Inviluppo (neg) 16 Inviluppo		-380.377 -109.8 -380.377 -109.8		.784 -4.53849e-06 .104 4.63161e-06	-11.7126 11.8219
367	1 SLV 01	EX + 0 3 EY	212.43 48.7		.875 5.6986e-06	-10.0756
367	1 SLV 01	EX + 0.3 EY EX - 0.3 EY	480.03 -9.9		.725 4.5766e-06	-5.39561
367	1 SLV 01	-EX + 0.3 EY	-459.57 2.3		725 -4.8614e-06	5.56439
367	1 SLV_01	-EX - 0.3 EY	-191.97 -56.3		.325 -5.9834e-06	10.2444
367	1 SLV_01	0.3 EX + EY	-334.97 101.0		.815 3.3116e-06	-10.0616
367	1 SLV_01	-0.3 EX + EY	-536.57 87.1		.735 1.436e-07	-5.36961
367 367	1 SLV_01 1 SLV 01	0.3 EX - EY -0.3 EX - EY	557.03 -94.7 355.43 -108.6		.185 -4.284e-07 .265 -3.5964e-06	5.53839 10.2304
367		EX + 0.3 EY	212.44 48.7		.866 5.6985e-06	
367		EX - 0.3 EY	480.04 -9.9		.734 4.5765e-06	-5.39528
367		-EX + 0.3 EY	-459.56 2.3		734 -4.8615e-06	5.56472
367		-EX - 0.3 EY	-191.96 -56.3		.334 -5.9835e-06	10.2447
367		0.3 EX + EY	-334.96 101.0			-10.0613
367 367		-0.3 EX + EY 0.3 EX - EY	-536.56 87.1 557.04 -94.7		.726 1.435e-07 .194 -4.285e-07	-5.36928 5.53872
367		-0.3 EX - EY	355.44 -108.6		.274 -3.5965e-06	10.2307
367	3 SLU 01		15.53 -5.		.305 -2.137e-07	0.1261
367	4 SLU 02		15.57 -5.6		312 -2.142e-07	0.1261
367	5 SLU_03		13.33 -4.8		.831 -1.837e-07	0.1039
367	6 SLU_04: zona gialla		10.19 -3.8	4 210.6 2	.251 -1.417e-07	0.08471
367	7 SLU_05: incendio		10.23 -3.7	2 208.4 2	.225 -1.424e-07 .403 -1.546e-07	0.08439
367	8 SLE_01_rara		11.21 -4.0	9 223.4 2.	403 -1.546e-07	0.09058
367 367	9 SLE_02_rara 10 SLE_03_rara		11.21 -4.0 9.7 -3.5	7 100 5 0	.405 -1.547e-07 .082 -1.341e-07	0.09054 0.07577
367	11 SLE 01 freq	==	10.49 -3.	5 212.3 2.	.273 -1.456e-07	0.086
367	12 SLE 01 qp		10.23 -3.7	2 208.4 2	.225 -1.424e-07	0.08439
367	14 Inviluppo (pos)		557.04 101.0	8 4559.7 134	.274 5.6986e-06	10.2447
367	15 Inviluppo (neg)		-536.57 -108.6	9 -4142.6 -129	.815 -5.9835e-06	-10.0756
367	16 Inviluppo		557.04 -108.6		.274 -5.9835e-06	10.2447
370	1 SLV_01	EX + 0.3 EY	825.46 72		.122 5.2062e-06	-5.22806
370		EX - 0.3 EY	515.86 27. -568.54 -31		.478 3.9222e-06	-10.4601
370 370	1 SLV_01 1 SLV 01	-EX + 0.3 EY -EX - 0.3 EY	-568.54 -31 -878.14 -76.		.678 -5.4778e-06	10.5319 5.29994
370		0.3 EX + EY	-878.14 -76. 698.76 87.		.152 3.4142e-06	6.39194
370	1 SLV 01	-0.3 EX + EY	280.56 56.		.292 5.942e-07	11.1199
370		0.3 EX - EY	-333.24 -60.		.848 -8.658e-07	-11.0481
370	1 SLV_01	-0.3 EX - EY	-751.44 -92.	9 3223.1 110	.708 -3.6858e-06	-6.32006
370	2 SLV_02	EX + 0.3 EY	825.43 72.0	5 -1370.8 -57	.115 5.2061e-06	-5.22873
370	2 SLV_02	EX - 0.3 EY	515.83 27.5		.485 3.9221e-06	-10.4607
370	2 SLV_02	-EX + 0.3 EY	-568.57 -31.9			10.5313
370 370	2 SLV_02 2 SLV 02	-EX - 0.3 EY 0.3 EX + EY	-878.17 -76.4 698.73 87.7		.685 -5.4779e-06 .145 3.4141e-06	5.29927 6.39127
570					173 3.71416-00	
	Commessa: CNAR.005-0	J1-01.22.DEF	D.Z01.STR.ST.01.RE.01_00_Relazio	n Rev 00		pag. A.3-132
			e sulle strutture.docm		I	

370	2 SLV_02	-0.3 EX + EY	280.53 56. -333.27 -60. -751.47 -92.	505 -2496.	6 -91.285	5.941e-07	11.1193
370	2 SLV_02	0.3 EX - EY	-333.27 -60.			5 -8.659e-07	-11.0487
370	2 SLV_02	-0.3 EX - EY	-751.47 -92.			3.6859e-06	-6.32073
370 370	3 SLU_01 4 SLU 02		-38.27 -3. -38.41 -3.			L -2.041e-07 5 -2.046e-07	0.05642 0.05624
370	5 SLU 03		-30.41 -3. -34 1 -2	328 209.		3 -1.753e-07	0.04499
370	6 SLU 04: zona gialla			211 163.		3 -1.351e-07	0.03354
370	7 SLU_05: incendio		-26.34 -2	.19 160.	9 1.278	3 -1.358e-07	0.03594
370	8 SLE_01_rara		-28.1 -2.	383 171.	7 1.389	9 -1.476e-07 L -1.477e-07 5 -1.28e-07	0.03785
370	9 SLE_02_rara		-28.16 -2.	386 17	2 1.391	L -1.477e-07	0.03775
370 370	10 SLE_03_rara 11 SLE 01 freq		-25.24 -2 -26.8 -2.	.07 155. 242 163.		5 -1.28e-07 3 -1.389e-07	0.03027 0.03626
370	12 SLE 01 qp		-26.34 -2	.19 160.		3 -1.358e-07	0.03594
370	14 Inviluppo (pos)	==	825.46 87	.71 3223.		5.2062e-06	11.1199
370	15 Inviluppo (neg)		-878.17 -92.		3 -108.152	2 -5.4779e-06	-11.0487
370	16 Inviluppo	==	-878.17 -92.			5 -5.4779e-06	11.1199
798	1 SLV_01	EX + 0.3 EY	642.731 -15.			l 1.0445e-05	-7.3395
798 798	1 SLV_01 1 SLV 01	EX - 0.3 EY	760.331 -63. -777.269 65.			9 1.1921e-05 L -1.2155e-05	-2.9955 3.3205
798	1 SLV_01	-EX - 0.3 EY	-777.209 05. -659.669 18	065 244		9 -1.0679e-05	7.6645
798	1 SLV 01	0.3 EX + EY	8.53102 68.	505 243		8.13e-07	-8.6765
798	1 SLV_01	-0.3 EX + EY	-417.469 92.	985 432		L -5.967e-06	-5.4785
798	1 SLV_01	0.3 EX - EY	400.531 -90.			9 5.733e-06	5.8035
798	1 SLV_01	-0.3 EX - EY	-25.469 -66.			9 -1.047e-06	9.0015
798 798	2 SLV_02 2 SLV 02	EX + 0.3 EY	642.738 -15	.78 -1953. .54 -3831.		5 1.04452e-05 5 1.19212e-05	-7.3399 -2.9959
798	2 SLV_02 2 SLV 02	EX - 0.3 EY	760.336 -63 -777.262 65			5 -1.21548e-05	3.3201
798	2 SLV 02	-EX - 0.3 EY	-659.662 18	.06 2448.		5 -1.06788e-05	7.6641
798	2 SLV_02	0.3 EX + EY	8.53802 6	3.5 2435.		8.132e-07	-8.6769
798	2 SLV_02	-0.3 EX + EY	-417.462 92	.98 4319.		5 -5.9668e-06	-5.4789
798	2 SLV_02	0.3 EX - EY	400.538 -9	0.7 -3824.		5.7332e-06	5.8031
798 798	2 SLV_02 3 SLU 01	-0.3 EX - EY	-25.462 -66	.22 -1940. 596 370.		5 -1.0468e-06 L -1.754e-07	9.0011 0.2369
798	4 SLU 02		-12.34 1. -12.59 1	705 371.		3 -1.76e-07	0.2374
798	5 SLU 03	==	-11.09 1.	559 324.		5 -1.532e-07	0.2071
798	6 SLU_04: zona gialla		-8.627 1.	146 248.		l -1.171e-07	0.1647
798	7 SLU_05: incendio		-8.469 1.	L45 24		l -1.17e-07	0.1625
798	8 SLE_01_rara		-9.111 1.	238 267.		1 -1.268e-07	0.1705
798 798	9 SLE_02_rara 10 SLE 03 rara		-9.135 1.	241 268. .14 236.		7 -1.27e-07	0.1708 0.1505
798	11 SLE 01 freq		-8 637 1	.14 250. 169 253.		l -1.116e-07 l -1.195e-07	0.1644
798	12 SLE 01 qp	==	-8.469 1.	145 24		l -1.17e-07	0.1625
798	14 Inviluppo (pos)		760.338 92.			1.19212e-05	9.0015
798	14 Inviluppo (pos) 15 Inviluppo (neg)		-777.269 -9	0.7 -3831.		l -1.2155e-05	-8.6769
798	16 Inviluppo		-777.269 92.	985 432		L -1.2155e-05	9.0015
799 799	1 SLV_01 1 SLV 01	EX + 0.3 EY	656.3 36. 766.7 10	356 258. 316 -1289.		2 9.44485e-06 3 1.05368e-05	-7.92305 -2.64305
799	1 SLV_01 1 SLV 01	EX - 0.3 EY	766.7 IU. -763.7 -7	516 –1289. 544 1726.		2 -1.05552e-05	
799	1 SLV 01	-EX - 0.3 EY	-653.3 -33.			3 -9.46316e-06	
799	1 SLV_01	0.3 EX + EY	30.5 51.			2 1.17085e-06	-10.324
799	1 SLV_01	-0.3 EX + EY	-395.5 38.			2 -4.82915e-06	
799	1 SLV_01	0.3 EX - EY	398.5 -35.			3 4.81084e-06	7.27595
799 799	1 SLV_01 2 SLV 02	-U.3 EX - EY	-27.5 -48.			3 -1.18916e-06 3 9.44489e-06	
799	2 SLV 02	EX = 0.3 EV	766 707 10	313 –1289.		7 1.05369e-05	
799	2 SLV 02	-EX + 0.3 EY	-763.693 -7.			3 -1.05551e-05	
799	2 SLV_02	-EX - 0.3 EY	-653.293 -33.	587 178.	4 32.2867	7 -9.46311e-06	8.09692
799	2 SLV_02	0.3 EX + EY	30.507 51.			3 1.17089e-06	
799	2 SLV_02	-0.3 EX + EY	-395.493 38.	133 3018.		3 -4.82911e-06	
799 799	2 SLV_02	0.3 EX - EY	398.507 -35.			7 4.81089e-06	7.27592 10.4979
799	2 SLV_02 3 SLU 01	-0.5 EA - EI	-27.453 -40. 2 616 1			7 -1.18911e-06 5 -1.386e-08	0.1201
799	4 SLU 02		2.604 1.	397 324.		2 -1.389e-08	0.1203
799	5 SLU 03		1.765 1.			2 -1.255e-08	0.1067
799	6 SLU_04: zona gialla		1.341 1.			5 -8.93e-09	0.09039
799	7 SLU_05: incendio		1.5 1.	336 218.		2 -9.155e-09	0.08695
799 799	8 SLE_01_rara 9 SLE 02 rara	==	1.753 1. 1.743 1.	399 235. 402 235.		3 -1.015e-08 5 -1.015e-08	0.088 0.08816
799	10 SLE 03 rara			309 208.		L -9.241e-09	0.07914
799	11 SLE 01 freq			351 22		1 -9.43e-09	0.08706
799	12 SLE_01_qp			336 218.		2 -9.155e-09	0.08695
799	14 Inviluppo (pos)		766.707 51.			7 1.05369e-05	10.498
799 799	15 Inviluppo (neg) 16 Inviluppo		-763.7 -48. 766.707 51.			2 -1.05552e-05 2 -1.05552e-05	-10.3241 10.498
800	1 SLV 01	EX + 0.3 EY	574.473 -7.			7.91017e-06	-9.50927
800	1 SLV 01	EX - 0.3 EY	483.873 -39.			7.05817e-06	-3.38927
800	1 SLV_01	-EX + 0.3 EY	-469.527 42.	785 -106.	5 -4.5185	-6.98983e-06	3.49073
800	1 SLV_01	-EX - 0.3 EY	-560.127 10.			-7.84183e-06	9.61073
800 800	1 SLV_01	0.3 EX + EY	314.773 47.			3.68917e-06 5 -7.8083e-07	-12.0993
800	1 SLV_01 1 SLV 01	-0.3 EX + EY 0.3 EX - EY	1.57299 62. 12.773 -58.			5 8.4917e-07	-8.19927 8.30073
800	1 SLV 01	-0.3 EX - EY	-300.427 -43.			3 -3.62083e-06	12.2007
800	2 SLV 02	EX + 0.3 EY	574.472 -7.			1 7.91016e-06	-9.50952
800	2 SLV_02	EX - 0.3 EY	483.872 -39.			7.05816e-06	-3.38952
800	2 SLV_02	-EX + 0.3 EY	-469.528 42.			1 -6.98984e-06	3.49048
800	2 SLV_02	-EX - 0.3 EY	-560.128 10.			5 -7.84184e-06	9.61048
800 800	2 SLV_02 2 SLV 02	0.3 EX + EY -0.3 EX + EY	314.772 47. 1.57199 62.			1 3.68916e-06 1 -7.8084e-07	-12.0995 -8.19952
800	2 SLV 02	0.3 EX - EY	12.772 -58.			8.4916e-07	8.30048
800	2 SLV_02	-0.3 EX - EY	-300.428 -43.			5 -3.62084e-06	12.2005
800	3 SLU_01		10.87 2.	371 229.	9 -1.28	3 5.089e-08	0.07439
800	4 SLU_02	==		381 230.		5.11e-08	0.07452
800	5 SLU_03	==		209 203.		5 4.421e-08	0.06337
800 800	6 SLU_04: zona gialla 7 SLU 05: incendio			724 157. 585 155.		1 3.466e-08 5 3.417e-08	0.05356 0.05073
800	8 SLE 01 rara	==		755 16		3.417e-08 3.672e-08	0.05253
800	9 SLE_02_rara			759 167.		3.681e-08	0.05269
800	10 SLE_03_rara		6.689 1.	541 14	9 -0.8619	3.217e-08	0.04534
800	11 SLE_01_freq			701 158.		3.481e-08	0.05114
800	12 SLE_01_qp			585 155.		3.417e-08	0.05073
800 800	14 Inviluppo (pos) 15 Inviluppo (neg)		574.473 62. -560.128 -58.			5 7.91017e-06 5 -7.84184e-06	12.2007 -12.0995
800	16 Inviluppo (neg)		574.473 62.			7.91017e-06	12.2007
_	Commessa: CNAR.005-0	11-01 22 DEE	D.Z01.STR.ST.01.RE.01 00 Relaz		ev 00		pag. A.3-133
	Commessa. CNAR.003-0	/1 U1.ZZ.DEF	e sulle strutture.docm	NOI RE	. v . U		pag. A.J-133
			c suite structure.uotili	I			I

801	1 SLV 01	EX + 0.3 EY	566.7 476.7 -455.3 -545.3 314 7.4 14 -292.6 566.7 476.7 -455.3 -545.3 314 7.4 14 -292.6 6 16.24 16.29 13.87 10.69 10.7 11.66 11.68 10.05 10.95 10.7 566.7 11.082	62.057	3240.6	-33.6447	9.15105e-06	-9.25968
801	1 SLV 01	EX - 0.3 EY	476.7	20.057	1818.6		7.95705e-06	
801	1 SLV 01	-EX + 0.3 EY	-455.3	-16.143	-1499.4		-7.76895e-06	
801	1 SLV 01	-EX - 0.3 EY	-545.3	-58.143	-2921.4		-8.96295e-06	
801	1 SLV 01	0.3 EX + EY	314	83.687	3240.6	-64.0247	4.62205e-06	-11.6677
801	1 SLV 01	-0.3 EX + EY	7.4	60.227	1818.6		-4.5395e-07	-7.90568
801	1 SLV 01	0.3 EX - EY	14	-56.313	-1499.4		6.4205e-07	7.75232
801	1 SLV 01	-0.3 EX - EY	-292.6	-79.773	-2921.4	62.0353	-4.43395e-06	11.5143
801	2 SLV 02	EX + 0.3 EY	566.7	62.052	3240.4	-33.6398	9.15099e-06	-9.25959
801	2 SLV 02	EX - 0.3 EY	476.7	20.052	1818.4	1.4602	7.95699e-06	-3.43359
801	2 SLV 02	-EX + 0.3 EY	-455.3	-16.148	-1499.6	-3.4398	-7.76901e-06	3.28041
801	2 SLV 02	-EX - 0.3 EY	-545.3	-58.148	-2921.6	31.6602	-8.96301e-06	9.10641
801	2 SLV_02	0.3 EX + EY	314	83.682	3240.4		4.62199e-06	-11.6676
801	2 SLV_02	-0.3 EX + EY	7.4	60.222	1818.4	-54.9598	-4.5401e-07	-7.90559
801	2 SLV_02	0.3 EX - EY	14	-56.318	-1499.6	52.9802	6.4199e-07	7.75241
801	2 SLV_02	-0.3 EX - EY	-292.6	-79.778	-2921.6	62.0402	-4.43401e-06	11.5144
801	3 SLU_01		16.24	2.867	234.9	-1.451	1.393e-07	-0.118
801	4 SLU_02		16.29	2.878	235.9	-1.457	1.399e-07	-0.1182
801	5 SLU_03		13.87	2.561	209.5		1.229e-07	-0.09996
801	6 SLU_04: zona gialla		10.69	1.984	162		9.543e-08	-0.07349
801	7 SLU_05: incendio		10.7	1.957	159.6		9.405e-08	-0.07668
801	8 SLE_01_rara	==	11.66	2.08	170.9	-1.053	1.01e-07	-0.08426
801	9 SLE_02_rara		11.68	2.084	171.3		1.013e-07	-0.08422
801	10 SLE_03_rara	==	10.05	1.87	153.5		8.975e-08	-0.07186
801	11 SLE_01_freq		10.95	1.988	162.5		9.584e-08	-0.07859
801	12 SLE_01_qp		10.7	1.957	159.6		9.405e-08	-0.07668
801	14 Inviluppo (pos)	==	566.7	83.687	3240.6		9.15105e-06	11.5144
801	15 Inviluppo (neg)		-545.3	-79.778	-2921.6		-8.96301e-06	
801	16 Inviluppo	==	566.7	83.687	3240.6		9.15105e-06	-11.6677
695	1 SLV_01	EX + 0.3 EY	111.082	126.42	139.32	-8.574	252.209	-233.967
695	1 SLV_01				45.72	8.586	371.609	-344.967
695	1 SLV_01	-EX + 0.3 EY	-158.918	44.42	63.52	4.486	-361.791	336.033
695 695	1 SLV_01 1 SLV 01	-EX - 0.3 EY 0.3 EX + EY	-107.558 -43.338	-56.98 216.02	-30.08 221.99	21.646	-242.391 -101.991	225.033
695								95.033
695	1 SLV_01 1 SLV 01	-0.3 EX + EY 0.3 EX - EY	-124.338	191.42 -121.98	199.25 -90.01	-20.105 33.177	-286.191 296.009	266.033 -274.967
695	1 SLV_01 1 SLV 01	-0.3 EX - EY	127.862 46.862	-121.98	-112.75	37.095	111.809	-103.967
695	2 SLV 02	EX + 0.3 EY	111.083	126.4	139.3	-8.572	252.211	-233.968
695	2 SLV_02 2 SLV 02	EX - 0.3 EY	162.443	25	45.7	8.588	371.611	-344.968
695	2 SLV 02 2 SLV 02	-EX + 0.3 EY	-158.917	44.4	63.5	4.488	-361.789	336.032
695	2 SLV 02	-EX - 0.3 EY	-107.557	-57	-30.1	21.648	-242.389	225.032
695	2 SLV 02	0.3 EX + EY	-43.337	216	221.97	-24.021	-101.989	95.032
695	2 SLV 02	-0.3 EX + EY	-124.337	191.4	199.23	-20.103	-286.189	266.032
695	2 SLV 02	0.3 EX - EY	127.863	-122	-90.03	33.179	296.011	-274.968
695	2 SLV 02	-0.3 EX - EY	46.863	-146.6	-112.77	37.097	111.811	-103.968
695	3 SLU 01		2.345	62.26	100.8	12.94	7.047	-6.44
695	4 SLU 02	==	2.349	62.3	100.8	12.93	7.054	-6.445
695	5 SLU 03		2.218	42.32	65.78	7.615	6.056	-5.503
695	6 SLU 04: zona gialla		1.831	34.88	54.78	6.53	5.068	-4.606
695	7 SLU 05: incendio		1.762	34.72	54.62	6.536	4.909	-4.467
695	8 SLE 01 rara		1.668	43.95	70.88	9.025	5.01	-4.572
695	9 SLE 02 rara		1.671	43.97	70.89	9.024	5.018	-4.579
695	10 SLE 03 rara		1.585	30.63	47.53	5.48	4.357	-3.954
695	11 SLE 01 freq		1.729	37.34	59.25	7.249	4.925	-4.484
695	12 SLE 01 qp		1.762	34.72	54.62	6.536	4.909	-4.467
695	14 Inviluppo (pos)		162.443	216.02	221.99	37.097	371.611	336.033
695	15 Inviluppo (neg)	==	-158.918	-146.6	-112.77	-24.023	-361.791	-344.968
695	16 Inviluppo	==	162.443	216.02	221.99	37.097	371.611	-344.968

A.3 - 18.4 Modi propri di vibrazione

TABELLA MASSE ECCITATE

PROSPETTO F	RIASSUNTIV	O MODI PI	RINCIPALI					
Periodo principa	ale	T1	Massa		Massa %	Mode	0	Note
Direzione X	+5	.56e-01	+2.42e+03		65	2		-eX
Direzione Y	+5	.84e-01	+2.38e+03		64	2		+eY
Direzione Z	+8	.40e-02	+3.12e+02		8	15		+eX
Rotazione Z	+7	.44e-01	+2.61e+05		67	1		+eX
Periodo		T2	Massa		Massa %	Mode	0	Note
Direzione X	+1	.39e-01	+5.26e+02		14	8		+eY
Direzione Y	+8	.02e-01	+9.26e+02		25	1		-eX
Direzione Z	+9	.02e-02	+7.98e+01		2	14		+eX
Rotazione Z	+2	.42e-01	+7.18e+04		19	4		+eX
PROSPETTO F			ECCITATE					
Analisi	Direz.X	%	Direz.Y	%	Direz. Z	%	Rotaz. Z	%
+eX	+3.42e+03	93	+3.34e+03	91	+4.02e+02	11	+3.73e+05	97
-eX	+3.42e+03	93	+3.39e+03	92	+4.02e+02	11	+3.72e+05	97
+eY	+3.43e+03	93	+3.34e+03	91	+4.02e+02	11	+3.58e+05	97
-eY	+3.43e+03	93	+3.34e+03	91	+4.03e+02	11	+3.57e+05	97

TRASLAZIONE CENTRO DELLE MASSE: +eX

FREQUENZE PROPRIE DI OSCILLAZIONE

Pulsazione	Frequenza	Periodo	Precisione
8.440e+00	1.343e+00	7.444e-01	0.000e+00
1.110e+01	1.766e+00	5.662e-01	0.000e+00
1.136e+01	1.809e+00	5.529e-01	0.000e+00
2.601e+01	4.140e+00	2.415e-01	0.000e+00
3.724e+01	5.927e+00	1.687e-01	0.000e+00
3.869e+01	6.157e+00	1.624e-01	0.000e+00
4.290e+01	6.828e+00	1.465e-01	0.000e+00
4.627e+01	7.363e+00	1.358e-01	0.000e+00
4.838e+01	7.700e+00	1.299e-01	0.000e+00
5.251e+01	8.357e+00	1.197e-01	0.000e+00
5.332e+01	8.486e+00	1.178e-01	2.857e-23
5.839e+01	9.294e+00	1.076e-01	2.314e-21
6.395e+01	1.018e+01	9.824e-02	5.234e-18
6.967e+01	1.109e+01	9.019e-02	3.313e-15
7.479e+01	1.190e+01	8.401e-02	4.330e-12
	8.440e+00 1.110e+01 1.136e+01 2.601e+01 3.724e+01 3.869e+01 4.290e+01 4.627e+01 4.838e+01 5.251e+01 5.839e+01 6.395e+01 6.967e+01	8.440e+00	8.440e+00 1.343e+00 7.444e-01 1.110e+01 1.766e+00 5.662e-01 1.136e+01 1.809e+00 5.529e-01 2.601e+01 4.140e+00 2.415e-01 3.724e+01 5.927e+00 1.687e-01 3.869e+01 6.157e+00 1.624e-01 4.290e+01 6.828e+00 1.465e-01 4.627e+01 7.363e+00 1.358e-01 4.838e+01 7.700e+00 1.299e-01 5.251e+01 8.357e+00 1.177e-01 5.332e+01 8.486e+00 1.178e-01 5.839e+01 9.294e+00 1.076e-01 6.395e+01 1.018e+01 9.824e-02 6.967e+01 1.109e+01 9.019e-02

COEFFICIENTI DI PARTECIPAZIONE MODALE

02	12 111007122	
Modo	Direz.X	Direz.Y
1	-2.295e+00	2.194e+01
2	-2.050e+01	-4.167e+01
3	4.558e+01	-1.773e+01
4	3.762e+00	8.101e+00
5	1.845e+01	3.194e+00
6	2.079e+00	-2.141e+01
7	-1.053e+01	7.291e+00
8	-1.625e+01	-3.697e+00
9	9.349e+00	5.627e+00
10	-5.324e+00	7.938e+00
11	6.959e+00	-8.548e+00
12	4.383e+00	6.417e+00
13	-3.863e-01	4.747e-01
14	4.656e-01	-4.375e-01
15	2.130e-01	-4.053e-01

	giore di :0.00		_				
Modo	Direz.X	%	Direz.Y	%	Direz.Z	%	Rotaz.
lodo: 1	+5.27e+00	0	+4.81e+02	13	+2.16e-03	0	+2.61e+
Progressiva	+5.27e+00	0	+4.81e+02	13	+2.16e-03	0	+2.61e+
Modo: 2	+4.20e+02	11	+1.74e+03	47	+3.44e-02	0	+6.52e+
Progressiva	+4.25e+02	12	+2.22e+03	60	+3.66e-02	0	+2.67e+
Modo: 3	+2.08e+03	56	+3.14e+02	9	+1.76e-02	0	+5.21e+
Progressiva	+2.50e+03	68	+2.53e+03	69	+5.42e-02	0	+2.72e+
/lodo: 4	+1.42e+01	0	+6.56e+01	2	+2.51e-03	0	+7.18e+
Progressiva	+2.52e+03	68	+2.60e+03	71	+5.67e-02	0	+3.44e+
Modo: 5	+3.40e+02	9	+1.02e+01	0	+1.51e-01	0	+7.36e+
Progressiva	+2.86e+03	78	+2.61e+03	71	+2.08e-01	0	+3.51e+
/lodo: 6	+4.32e+00	0	+4.58e+02	12	+1.47e-01	0	+1.69e+
Progressiva	+2.86e+03	78	+3.07e+03	83	+3.54e-01	0	+3.53e+
Modo: 7	+1.11e+02	3	+5.32e+01	1	+1.09e-01	0	+1.71e+
Progressiva	+2.97e+03	81	+3.12e+03	85	+4.64e-01	0	+3.70e+
Modo: 8	+2.64e+02	7	+1.37e+01	0	+3.11e-02	0	+3.33e-
Progressiva	+3.24e+03	88	+3.13e+03	85	+4.95e-01	0	+3.70e+
Modo: 9	+8.74e+01	2	+3.17e+01	1	+5.99e-02	0	+8.51e+
Progressiva	+3.32e+03	90	+3.16e+03	86	+5.55e-01	0	+3.71e+
/lodo: 10	+2.83e+01	1	+6.30e+01	2	+7.84e+00	0	+3.06e+
Progressiva	+3.35e+03	91	+3.23e+03	88	+8.40e+00	0	+3.71e+
/lodo: 11	+4.84e+01	1	+7.31e+01	2	+1.45e+00	0	+2.98e+
Progressiva	+3.40e+03	92	+3.30e+03	90	+9.85e+00	0	+3.72e+
/lodo: 12	+1.92e+01	1	+4.12e+01	1	+6.60e-02	0	+1.55e+
Progressiva	+3.42e+03	93	+3.34e+03	91	+9.91e+00	0	+3.72e+
Modo: 13	+1.49e-01	0	+2.25e-01	0	+1.38e-02	0	+9.34e+
Progressiva	+3.42e+03	93	+3.34e+03	91	+9.93e+00	0	+3.73e+
lodo: 14	+2.17e-01	0	+1.91e-01	0	+7.98e+01	2	+7.45e+
Progressiva	+3.42e+03	93	+3.34e+03	91	+8.97e+01	2	+3.73e+
Modo: 15	+3.42e+03 +4.54e-02	93	+1.64e-01	0	+3.12e+02	8	+5.03e-
Progressiva	+3.42e+03	93	+3.34e+03	91	+4.02e+02	11	+3.73e+
ASSA TOTALE Direzion +3.68e+	ne X	Direzione Y +3.68e+03		Direzione Z +3.68e+03		azione Z .84e+05	
				+3.686+03		.046+03	
RASLAZIONE C	CENTRO DELLE M	ASSE: -eX		+3.686+03	.5	.046+03	
				+3.686+03		.046+03	
	OPRIE DI OSCILL			+3.086+U3	Periodo		Precisione
REQUENZE PR Nume	OPRIE DI OSCILL	AZIONE		Frequenza			
REQUENZE PR Numei	OPRIE DI OSCILL	AZIONE Pulsazione 7.834e+00			Periodo 8.020e-0	1	0.000e+00
REQUENZE PR Numer 1 2	OPRIE DI OSCILL	AZIONE Pulsazione 7.834e+00 1.130e+01		Frequenza 1.247e+00 1.798e+00	Periodo 8.020e-0 5.562e-0	1	0.000e+00 0.000e+00
REQUENZE PR Numer 1 2 3	OPRIE DI OSCILL	AZIONE Pulsazione 7.834e+00 1.130e+01 1.195e+01		Frequenza 1.247e+00 1.798e+00 1.902e+00	Periodo 8.020e-0 5.562e-0 5.257e-0	1 1 1	0.000e+00 0.000e+00 0.000e+00
REQUENZE PR Numer 1 2 3 4	OPRIE DI OSCILL	AZIONE Pulsazione 7.834e+00 1.130e+01 1.195e+01 2.442e+01		Frequenza 1.247e+00 1.798e+00 1.902e+00 3.886e+00	Periodo 8.020e-0 5.562e-0 5.257e-0 2.573e-0	1 1 1	0.000e+00 0.000e+00 0.000e+00 0.000e+00
REQUENZE PR Numer 1 2 3 4 5	OPRIE DI OSCILL	AZIONE Pulsazione 7.834e+00 1.130e+01 1.195e+01 2.442e+01 3.503e+01		Frequenza 1.247e+00 1.798e+00 1.902e+00 3.886e+00 5.576e+00	Periodo 8.020e-0 5.562e-0 5.257e-0 2.573e-0 1.793e-0	1 1 1 1	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
REQUENZE PR Numer 1 2 3 4 5 6	OPRIE DI OSCILL	AZIONE Pulsazione 7.834e+00 1.130e+01 1.195e+01 2.442e+01 3.503e+01 3.965e+01		Frequenza 1.247e+00 1.798e+00 1.902e+00 3.886e+00 5.576e+00 6.311e+00	Periodo 8.020e-0 5.562e-0 5.257e-0 2.573e-0 1.793e-0 1.585e-0	1 1 1 1 1	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
REQUENZE PR Numer 1 2 3 4 5 6 7	OPRIE DI OSCILL	AZIONE Pulsazione 7.834e+00 1.130e+01 1.195e+01 2.442e+01 3.503e+01 3.965e+01 4.093e+01		Frequenza 1.247e+00 1.798e+00 1.902e+00 3.886e+00 5.576e+00 6.311e+00 6.515e+00	Periodo 8.020e-0 5.562e-0 5.257e-0 2.573e-0 1.793e-0 1.585e-0	1 1 1 1 1 1	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
REQUENZE PR Numer 1 2 3 4 5 6 7 8	OPRIE DI OSCILL	AZIONE Pulsazione 7.834e+00 1.130e+01 1.195e+01 2.442e+01 3.503e+01 4.093e+01 4.452e+01		Frequenza 1.247e+00 1.798e+00 1.902e+00 3.886e+00 5.576e+00 6.311e+00 6.515e+00 7.085e+00	Periodo 8.020e-0 5.562e-0 5.257e-0 2.573e-0 1.793e-0 1.585e-0 1.411e-0	1 1 1 1 1 1 1	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
REQUENZE PR Numei 1 2 3 4 5 6 7 8 9	OPRIE DI OSCILL	AZIONE Pulsazione 7.834e+00 1.130e+01 1.195e+01 2.442e+01 3.503e+01 4.093e+01 4.452e+01 4.880e+01		Frequenza 1.247e+00 1.798e+00 1.902e+00 3.886e+00 5.576e+00 6.311e+00 6.515e+00 7.085e+00 7.766e+00	Periodo 8.020e-0 5.562e-0 5.257e-0 2.573e-0 1.585e-0 1.535e-0 1.411e-0 1.288e-0	1 1 1 1 1 1 1	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
REQUENZE PR Nume 1 2 3 4 5 6 7 8 9 10	OPRIE DI OSCILL ro	AZIONE Pulsazione 7.834e+00 1.130e+01 1.195e+01 2.442e+01 3.503e+01 4.093e+01 4.452e+01 4.880e+01 5.152e+01		Frequenza 1.247e+00 1.798e+00 1.902e+00 3.886e+00 5.576e+00 6.311e+00 7.085e+00 7.766e+00 8.200e+00	Periodo 8.020e-0 5.562e-0 5.257e-0 2.573e-0 1.585e-0 1.535e-0 1.411e-0 1.288e-0 1.220e-0	1 1 1 1 1 1 1 1 1	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
REQUENZE PR Numer 1 2 3 4 5 6 7 8 9 10 11	OPRIE DI OSCILL	AZIONE Pulsazione 7.834e+00 1.130e+01 1.195e+01 2.442e+01 3.503e+01 4.093e+01 4.452e+01 4.880e+01 5.152e+01 5.309e+01		Frequenza 1.247e+00 1.798e+00 1.902e+00 3.886e+00 5.576e+00 6.311e+00 7.085e+00 7.766e+00 8.200e+00 8.449e+00	Periodo 8.020e-0 5.562e-0 5.257e-0 2.573e-0 1.585e-0 1.535e-0 1.411e-0 1.288e-0 1.220e-0	1 1 1 1 1 1 1 1 1	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
REQUENZE PR Numer 1 2 3 4 5 6 7 8 9 10 11	OPRIE DI OSCILL	AZIONE Pulsazione 7.834e+00 1.130e+01 1.195e+01 2.442e+01 3.503e+01 4.093e+01 4.452e+01 4.880e+01 5.152e+01 5.309e+01 6.019e+01		Frequenza 1.247e+00 1.798e+00 1.902e+00 3.886e+00 5.576e+00 6.311e+00 7.085e+00 7.766e+00 8.200e+00 8.449e+00 9.579e+00	Periodo 8.020e-0 5.562e-0 5.257e-0 2.573e-0 1.585e-0 1.535e-0 1.411e-0 1.288e-0 1.220e-0 1.184e-0	1 1 1 1 1 1 1 1 1 1	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.610e-20
REQUENZE PR Numer 1 2 3 4 5 6 7 8 9 10 11 12 13	OPRIE DI OSCILL	AZIONE Pulsazione 7.834e+00 1.130e+01 1.195e+01 2.442e+01 3.503e+01 4.093e+01 4.452e+01 4.880e+01 5.152e+01 5.309e+01 6.019e+01 6.804e+01		Frequenza 1.247e+00 1.798e+00 1.902e+00 3.886e+00 5.576e+00 6.311e+00 6.515e+00 7.085e+00 7.766e+00 8.200e+00 8.449e+00 9.579e+00 1.083e+01	Periodo 8.020e-0 5.562e-0 5.257e-0 2.573e-0 1.585e-0 1.535e-0 1.411e-0 1.288e-0 1.220e-0 1.184e-0 1.044e-0 9.235e-0	1 1 1 1 1 1 1 1 1 1 1 1 1	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.610e-20 7.216e-16
REQUENZE PR Numer 1 2 3 4 5 6 7 8 9 10 11 12 13 14	OPRIE DI OSCILL	AZIONE Pulsazione 7.834e+00 1.130e+01 1.195e+01 2.442e+01 3.503e+01 4.093e+01 4.452e+01 4.880e+01 5.152e+01 5.309e+01 6.019e+01 6.804e+01 6.967e+01		Frequenza 1.247e+00 1.798e+00 1.902e+00 3.886e+00 5.576e+00 6.311e+00 6.515e+00 7.085e+00 7.766e+00 8.200e+00 8.449e+00 9.579e+00 1.083e+01 1.109e+01	Periodo 8.020e-0 5.562e-0 5.257e-0 2.573e-0 1.793e-0 1.585e-0 1.411e-0 1.288e-0 1.220e-0 1.184e-0 1.044e-0 9.235e-0 9.019e-0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.610e-20 7.216e-16 9.393e-15
REQUENZE PR Numer 1 2 3 4 5 6 7 8 9 10 11 12 13	OPRIE DI OSCILL	AZIONE Pulsazione 7.834e+00 1.130e+01 1.195e+01 2.442e+01 3.503e+01 4.093e+01 4.452e+01 4.880e+01 5.152e+01 5.309e+01 6.019e+01 6.804e+01		Frequenza 1.247e+00 1.798e+00 1.902e+00 3.886e+00 5.576e+00 6.311e+00 6.515e+00 7.085e+00 7.766e+00 8.200e+00 8.449e+00 9.579e+00 1.083e+01	Periodo 8.020e-0 5.562e-0 5.257e-0 2.573e-0 1.585e-0 1.535e-0 1.411e-0 1.288e-0 1.220e-0 1.184e-0 1.044e-0 9.235e-0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.610e-20 7.216e-16 9.393e-15
REQUENZE PR Numer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	OPRIE DI OSCILL	AZIONE Pulsazione 7.834e+00 1.130e+01 1.195e+01 2.442e+01 3.503e+01 4.093e+01 4.452e+01 4.880e+01 5.152e+01 5.309e+01 6.019e+01 6.804e+01 6.967e+01 7.479e+01	Direz X	Frequenza 1.247e+00 1.798e+00 1.902e+00 3.886e+00 5.576e+00 6.311e+00 6.515e+00 7.085e+00 7.766e+00 8.200e+00 8.449e+00 9.579e+00 1.083e+01 1.109e+01	Periodo 8.020e-0 5.562e-0 5.257e-0 2.573e-0 1.793e-0 1.535e-0 1.411e-0 1.288e-0 1.220e-0 1.184e-0 1.044e-0 9.235e-0 9.019e-0 8.401e-0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2	Precisione 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.610e-20 7.216e-16 9.393e-15 5.258e-12
REQUENZE PR Numer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	OPRIE DI OSCILL ro DI PARTECIPAZION	AZIONE Pulsazione 7.834e+00 1.130e+01 1.195e+01 2.442e+01 3.503e+01 4.093e+01 4.452e+01 4.880e+01 5.152e+01 5.309e+01 6.019e+01 6.804e+01 6.967e+01 7.479e+01	Direz.X	Frequenza 1.247e+00 1.798e+00 1.902e+00 3.886e+00 5.576e+00 6.311e+00 6.515e+00 7.085e+00 7.766e+00 8.200e+00 8.449e+00 9.579e+00 1.083e+01 1.109e+01	Periodo 8.020e-0 5.562e-0 5.257e-0 2.573e-0 1.793e-0 1.585e-0 1.411e-0 1.288e-0 1.220e-0 1.184e-0 9.235e-0 9.019e-0 8.401e-0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.610e-20 7.216e-16 9.393e-15
REQUENZE PR Numer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	OPRIE DI OSCILL	AZIONE Pulsazione 7.834e+00 1.130e+01 1.195e+01 2.442e+01 3.503e+01 4.093e+01 4.452e+01 4.880e+01 5.152e+01 5.309e+01 6.019e+01 6.804e+01 7.479e+01	Direz.X 1.724e+00 4.921e+01	Frequenza 1.247e+00 1.798e+00 1.902e+00 3.886e+00 5.576e+00 6.311e+00 6.515e+00 7.085e+00 7.766e+00 8.200e+00 8.449e+00 9.579e+00 1.083e+01 1.109e+01	Periodo 8.020e-0 5.562e-0 5.257e-0 2.573e-0 1.793e-0 1.535e-0 1.411e-0 1.288e-0 1.220e-0 1.184e-0 1.044e-0 9.235e-0 9.019e-0 8.401e-0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.610e-20 7.216e-16 9.393e-15

N	Modo		Direz.X		Direz.Y		
	3		8.848e+00		3.924e+01		
	4		3.369e+00		-1.380e+01		
	5		-1.205e+01		-2.848e+00		
	6		-1.238e+01		1.294e+01		
	7		1.142e+01		-4.353e+00		
	8		1.487e+01		1.551e+01		
	9		1.021e+01		8.702e+00		
	10		1.099e+01		-9.691e+00		
	11		5.009e+00		-3.090e+00		
	12		9.723e-01		-2.927e-01		
	13		2.509e+00		7.516e+00		
	14		-4.291e-01		4.874e-01		
	15		-2.223e-01		-4.731e-02		
MASSA ECCITA	TA						
per quota Z mag							
Modo	Direz.X	%	Direz.Y	%	Direz.Z	%	Rotaz.Z
Modo: 1	+2.97e+00	0	+9.26e+02	25	+6.17e-03	0	+2.34e+05
Progressiva	+2.97e+00	0	+9.26e+02	25	+6.17e-03	0	+2.34e+05
Modo: 2	+2.42e+03	66	+6.24e+01	2	+6.98e-03	0	+8.88e+01
Progressiva	+2.42e+03	66	+9.89e+02	27	+1.31e-02	0	+2.35e+05
Modo: 3	+7.83e+01	2	+1.54e+03	42	+4.14e-02	0	+3.92e+04
Progressiva	+2.50e+03	68	+2.53e+03	69	+5.46e-02	0	+2.74e+05
Modo: 4	+1.13e+01	0	+1.90e+02	5	+1.37e-02	0	+6.28e+04
Progressiva	+2.51e+03	68	+2.72e+03	74	+6.82e-02	0	+3.37e+05
Modo: 5	+1.45e+02	4	+8.11e+00	0	+7.79e-02	0	+1.59e+04
Progressiva	+2.66e+03	72	+2.73e+03	74	+1.46e-01	0	+3.52e+05
Modo: 6	+1.53e+02	4	+1.68e+02	5	+3.03e-03	0	+1.13e+03
Progressiva	+2.81e+03	76	+2.89e+03	79	+1.49e-01	0	+3.54e+05
Modo: 7	+1.30e+02	4	+1.90e+01	1	+1.04e-01	0	+1.64e+04
Progressiva	+2.94e+03	80	+2.91e+03	79	+2.53e-01	0	+3.70e+05
Modo: 8	+2.21e+02	6	+2.41e+02	7	+1.15e-01	0	+8.73e-03
Progressiva	+3.16e+03	86	+3.15e+03	86	+3.68e-01	0	+3.70e+05
Modo: 9	+1.04e+02	3	+7.57e+01	2	+8.47e-02	0	+3.91e+02
Progressiva	+3.27e+03	89	+3.23e+03	88	+4.52e-01	0	+3.70e+05
Modo: 10	+1.21e+02	3	+9.39e+01	3	+4.25e+00	0	+5.61e+02
Progressiva	+3.39e+03	92	+3.32e+03	90	+4.70e+00	0	+3.71e+05
Modo: 11	+2.51e+01	1	+9.55e+00	0	+5.17e+00	0	+5.57e+01
Progressiva	+3.41e+03	93	+3.33e+03	91	+9.88e+00	0	+3.71e+05
Modo: 12	+9.45e-01	0	+8.57e-02	0	+6.45e-04	0	+1.47e+03
Progressiva	+3.42e+03	93	+3.33e+03	91	+9.88e+00	0	+3.72e+05
Modo: 13	+6.30e+00	0	+5.65e+01	2	+2.54e-01	0	+4.18e+01
Progressiva	+3.42e+03	93	+3.39e+03	92	+1.01e+01	0	+3.72e+05
Modo: 14	+1.84e-01	0	+2.38e-01	0	+7.96e+01	2	+6.63e+00
Progressiva	+3.42e+03	93	+3.39e+03	92	+8.98e+01	2	+3.72e+05
Modo: 15	+4.94e-02	0	+2.24e-03	0	+3.12e+02	8	+1.34e-01
Progressiva	+3.42e+03	93	+3.39e+03	92	+4.02e+02	11	+3.72e+05
MASSA TOTALE							
Direzior		Direzione Y		Direzione Z		tazione Z	
+3.68e+	÷03	+3.68e+03		+3.68e+03	+3	.84e+05	
TRASLAZIONE (CENTRO DELLE M	ASSE: +eY					
FREQUENZE PR	OPRIE DI OSCILL	AZIONE					
Nume	ro	Pulsazione		Frequenza	Periodo		Precisione
1		8 4640±00		1 3470+00	7 4230 01		0.0000+00

Numero	Pulsazione	Frequenza	Periodo	Precisione
1	8.464e+00	1.347e+00	7.423e-01	0.000e+00
2	1.076e+01	1.713e+00	5.838e-01	0.000e+00
3	1.173e+01	1.866e+00	5.358e-01	0.000e+00
4	2.613e+01	4.159e+00	2.404e-01	0.000e+00
5	3.566e+01	5.675e+00	1.762e-01	0.000e+00
6	3.871e+01	6.161e+00	1.623e-01	0.000e+00

Commessa: CNAR.005-01-01.22.DEF D.Z01.STR.ST.01.RE.01_00_Relazion Rev 00 pag. A.3-137 e sulle strutture.docm

Precisione

7							
•		4.243e+01	1	6.753e+00	1.481e-01		0.000e+00
8	}	4.510e+0°	1	7.178e+00	1.393e-01		0.000e+00
9		4.841e+0		7.705e+00	1.298e-01		0.000e+00
10		5.217e+0		8.304e+00	1.204e-01		0.000e+00
11		5.322e+0		8.471e+00	1.181e-01		0.000e+00
12	2	6.355e+0	1	1.011e+01	9.887e-02		3.001e-19
13	3	6.615e+0°	1	1.053e+01	9.498e-02		4.296e-18
14	1	6.966e+0	1	1.109e+01	9.019e-02		6.949e-16
15	5	7.479e+0°	1	1.190e+01	8.401e-02		1.171e-12
OFFEICIENTI I	DI PARTECIPAZION	E MODALE					
	Modo	E WIODALE	Direz.X		Direz.Y		
	1		-1.774e+01		-1.017e+01		
	2		1.038e+01		-4.880e+01		
	3		4.569e+01		7.202e+00		
	4		-4.365e+00		-4.224e+00		
	5		9.923e+00		6.492e+00		
	6		-9.709e+00		2.200e+01		
	7		1.760e+00		3.626e+00		
	8		-2.294e+01		-6.971e+00		
	9		-8.064e+00		-6.780e+00		
	10		-7.713e+00		8.652e+00		
	11		5.989e+00		-6.555e+00		
	12		-4.183e-01		-3.960e-01		
	13		-4.588e+00		-5.583e+00		
	14						
			4.644e-01		-4.998e-01		
	15		3.737e-01		-1.397e-01		
IASSA ECCITA	ТΔ						
	giore di :0.00						
er quota z mag							
er quota z mag Modo	Direz.X	%	Direz.Y	%	Direz.Z	%	Rotaz.Z
Modo		% 9	Direz.Y +1.03e+02	% 3	Direz.Z +9.21e-04	% 0	Rotaz.Z +2.34e+05
Modo 1	Direz.X						
Modo Modo: 1 Progressiva	Direz.X +3.15e+02 +3.15e+02	9 9	+1.03e+02 +1.03e+02	3 3	+9.21e-04 +9.21e-04	0 0	+2.34e+05 +2.34e+05
Modo Modo: 1 Progressiva Modo: 2	Direz.X +3.15e+02 +3.15e+02 +1.08e+02	9 9 3	+1.03e+02 +1.03e+02 +2.38e+03	3 3 65	+9.21e-04 +9.21e-04 +4.99e-02	0 0 0	+2.34e+05 +2.34e+05 +6.09e+03
Modo: 1 Progressiva Modo: 2 Progressiva	Direz.X +3.15e+02 +3.15e+02 +1.08e+02 +4.22e+02	9 9 3 11	+1.03e+02 +1.03e+02 +2.38e+03 +2.49e+03	3 3 65 68	+9.21e-04 +9.21e-04 +4.99e-02 +5.08e-02	0 0 0	+2.34e+05 +2.34e+05 +6.09e+03 +2.40e+05
Modo Modo: 1 Progressiva Modo: 2 Progressiva Modo: 3	Direz.X +3.15e+02 +3.15e+02 +1.08e+02 +4.22e+02 +2.09e+03	9 9 3 11 57	+1.03e+02 +1.03e+02 +2.38e+03 +2.49e+03 +5.19e+01	3 3 65 68 1	+9.21e-04 +9.21e-04 +4.99e-02 +5.08e-02 +1.13e-04	0 0 0 0	+2.34e+05 +2.34e+05 +6.09e+03 +2.40e+05 +1.73e+04
Modo Modo: 1 Progressiva Modo: 2 Progressiva Modo: 3 Progressiva	Direz.X +3.15e+02 +3.15e+02 +1.08e+02 +4.22e+02 +2.09e+03 +2.51e+03	9 9 3 11 57 68	+1.03e+02 +1.03e+02 +2.38e+03 +2.49e+03 +5.19e+01 +2.54e+03	3 3 65 68 1 69	+9.21e-04 +9.21e-04 +4.99e-02 +5.08e-02 +1.13e-04 +5.09e-02	0 0 0 0 0	+2.34e+05 +2.34e+05 +6.09e+03 +2.40e+05 +1.73e+04 +2.58e+05
Modo Modo: 1 Progressiva Modo: 2 Progressiva Modo: 3 Progressiva Modo: 4	Direz.X +3.15e+02 +3.15e+02 +1.08e+02 +4.22e+02 +2.09e+03 +2.51e+03 +1.91e+01	9 9 3 11 57 68 1	+1.03e+02 +1.03e+02 +2.38e+03 +2.49e+03 +5.19e+01 +2.54e+03 +1.78e+01	3 3 65 68 1 69	+9.21e-04 +9.21e-04 +4.99e-02 +5.08e-02 +1.13e-04 +5.09e-02 +1.52e-02	0 0 0 0 0	+2.34e+05 +2.34e+05 +6.09e+03 +2.40e+05 +1.73e+04 +2.58e+05 +6.29e+04
Modo: 1 Progressiva Modo: 2 Progressiva Modo: 3 Progressiva Modo: 4	Direz.X +3.15e+02 +3.15e+02 +1.08e+02 +4.22e+02 +2.09e+03 +2.51e+03	9 9 3 11 57 68	+1.03e+02 +1.03e+02 +2.38e+03 +2.49e+03 +5.19e+01 +2.54e+03	3 3 65 68 1 69	+9.21e-04 +9.21e-04 +4.99e-02 +5.08e-02 +1.13e-04 +5.09e-02	0 0 0 0 0	+2.34e+05 +2.34e+05 +6.09e+03 +2.40e+05 +1.73e+04 +2.58e+05
Modo: 1 Progressiva Modo: 2 Progressiva Modo: 3 Progressiva Modo: 4 Progressiva	Direz.X +3.15e+02 +3.15e+02 +1.08e+02 +4.22e+02 +2.09e+03 +2.51e+03 +1.91e+01	9 9 3 11 57 68 1	+1.03e+02 +1.03e+02 +2.38e+03 +2.49e+03 +5.19e+01 +2.54e+03 +1.78e+01	3 3 65 68 1 69	+9.21e-04 +9.21e-04 +4.99e-02 +5.08e-02 +1.13e-04 +5.09e-02 +1.52e-02	0 0 0 0 0	+2.34e+05 +2.34e+05 +6.09e+03 +2.40e+05 +1.73e+04 +2.58e+05 +6.29e+04
Modo flodo: 1 frogressiva flodo: 2 frogressiva flodo: 3 frogressiva flodo: 4 frogressiva flodo: 5	Direz.X +3.15e+02 +3.15e+02 +1.08e+02 +4.22e+02 +2.09e+03 +2.51e+03 +1.91e+01 +2.53e+03	9 9 3 11 57 68 1	+1.03e+02 +1.03e+02 +2.38e+03 +2.49e+03 +5.19e+01 +2.54e+03 +1.78e+01 +2.55e+03	3 3 65 68 1 69 0	+9.21e-04 +9.21e-04 +4.99e-02 +5.08e-02 +1.13e-04 +5.09e-02 +1.52e-02 +6.61e-02	0 0 0 0 0 0	+2.34e+05 +2.34e+05 +6.09e+03 +2.40e+05 +1.73e+04 +2.58e+05 +6.29e+04 +3.21e+05
Modo lodo: 1 rogressiva lodo: 2 rogressiva lodo: 3 rogressiva lodo: 4 rogressiva lodo: 5 rogressiva	Direz.X +3.15e+02 +3.15e+02 +1.08e+02 +4.22e+02 +2.09e+03 +2.51e+03 +1.91e+01 +2.53e+03 +9.85e+01	9 9 3 11 57 68 1 69 3	+1.03e+02 +1.03e+02 +2.38e+03 +2.49e+03 +5.19e+01 +2.54e+03 +1.78e+01 +2.55e+03 +4.21e+01	3 3 65 68 1 69 0 69	+9.21e-04 +9.21e-04 +4.99e-02 +5.08e-02 +1.13e-04 +5.09e-02 +1.52e-02 +6.61e-02 +1.60e-01	0 0 0 0 0 0 0	+2.34e+05 +2.34e+05 +6.09e+03 +2.40e+05 +1.73e+04 +2.58e+05 +6.29e+04 +3.21e+05 +1.01e+04
Modo Modo: 1 Progressiva Modo: 2 Progressiva Modo: 3 Progressiva Modo: 4 Progressiva Modo: 5 Progressiva Modo: 5	Direz.X +3.15e+02 +3.15e+02 +1.08e+02 +4.22e+02 +2.09e+03 +2.51e+03 +1.91e+01 +2.53e+03 +9.85e+01 +2.63e+03 +9.43e+01	9 9 3 11 57 68 1 69 3 71	+1.03e+02 +1.03e+02 +2.38e+03 +2.49e+03 +5.19e+01 +2.54e+03 +1.78e+01 +2.55e+03 +4.21e+01 +2.60e+03 +4.84e+02	3 3 65 68 1 69 0 69 1 71	+9.21e-04 +9.21e-04 +4.99e-02 +5.08e-02 +1.13e-04 +5.09e-02 +1.52e-02 +6.61e-02 +1.60e-01 +2.26e-01 +8.63e-03	0 0 0 0 0 0 0 0	+2.34e+05 +2.34e+05 +6.09e+03 +2.40e+05 +1.73e+04 +2.58e+05 +6.29e+04 +3.21e+05 +1.01e+04 +3.31e+05 +2.48e+01
Modo Modo: 1 Progressiva Modo: 2 Progressiva Modo: 3 Progressiva Modo: 4 Progressiva Modo: 5 Progressiva Modo: 6 Progressiva	Direz.X +3.15e+02 +3.15e+02 +1.08e+02 +4.22e+02 +2.09e+03 +2.51e+03 +1.91e+01 +2.53e+03 +9.85e+01 +2.63e+03 +9.43e+01 +2.72e+03	9 9 3 11 57 68 1 69 3 71 3	+1.03e+02 +1.03e+02 +2.38e+03 +2.49e+03 +5.19e+01 +2.54e+03 +1.78e+01 +2.55e+03 +4.21e+01 +2.60e+03 +4.84e+02 +3.08e+03	3 3 65 68 1 69 0 69 1 71 13	+9.21e-04 +9.21e-04 +4.99e-02 +5.08e-02 +1.13e-04 +5.09e-02 +1.52e-02 +6.61e-02 +1.60e-01 +2.26e-01 +8.63e-03 +2.34e-01	0 0 0 0 0 0 0 0	+2.34e+05 +2.34e+05 +6.09e+03 +2.40e+05 +1.73e+04 +2.58e+05 +6.29e+04 +3.21e+05 +1.01e+04 +3.31e+05 +2.48e+01 +3.31e+05
Modo Modo: 1 Progressiva Modo: 2 Progressiva Modo: 3 Progressiva Modo: 4 Progressiva Modo: 5 Progressiva Modo: 6 Progressiva Modo: 6	Direz.X +3.15e+02 +3.15e+02 +1.08e+02 +4.22e+02 +2.09e+03 +2.51e+03 +1.91e+01 +2.53e+03 +9.85e+01 +2.63e+03 +9.43e+01 +2.72e+03 +3.10e+00	9 9 3 11 57 68 1 69 3 71 3 74	+1.03e+02 +1.03e+02 +2.38e+03 +2.49e+03 +5.19e+01 +2.54e+03 +1.78e+01 +2.55e+03 +4.21e+01 +2.60e+03 +4.84e+02 +3.08e+03 +1.31e+01	3 3 65 68 1 69 0 69 1 71 13 84	+9.21e-04 +9.21e-04 +4.99e-02 +5.08e-02 +1.13e-04 +5.09e-02 +1.52e-02 +6.61e-02 +1.60e-01 +2.26e-01 +8.63e-03 +2.34e-01 +3.02e-02	0 0 0 0 0 0 0 0	+2.34e+05 +2.34e+05 +6.09e+03 +2.40e+05 +1.73e+04 +2.58e+05 +6.29e+04 +3.21e+05 +1.01e+04 +3.31e+05 +2.48e+01 +3.31e+05 +2.25e+04
Modo: 1 Progressiva Modo: 2 Progressiva Modo: 3 Progressiva Modo: 4 Progressiva Modo: 5 Progressiva Modo: 6 Progressiva Modo: 7 Progressiva	Direz.X +3.15e+02 +3.15e+02 +1.08e+02 +4.22e+02 +2.09e+03 +2.51e+03 +1.91e+01 +2.53e+03 +9.85e+01 +2.63e+03 +9.43e+01 +2.72e+03 +3.10e+00 +2.72e+03	9 9 3 11 57 68 1 69 3 71 3 74 0	+1.03e+02 +1.03e+02 +2.38e+03 +2.49e+03 +5.19e+01 +2.54e+03 +1.78e+01 +2.55e+03 +4.21e+01 +2.60e+03 +4.84e+02 +3.08e+03 +1.31e+01 +3.09e+03	3 3 65 68 1 69 0 69 1 71 13 84 0	+9.21e-04 +9.21e-04 +4.99e-02 +5.08e-02 +1.13e-04 +5.09e-02 +1.52e-02 +6.61e-02 +1.60e-01 +2.26e-01 +8.63e-03 +2.34e-01 +3.02e-02 +2.65e-01	0 0 0 0 0 0 0 0 0	+2.34e+05 +2.34e+05 +6.09e+03 +2.40e+05 +1.73e+04 +2.58e+05 +6.29e+04 +3.21e+05 +1.01e+04 +3.31e+05 +2.48e+01 +3.31e+05 +2.25e+04 +3.53e+05
Modo flodo: 1 frogressiva flodo: 2 frogressiva flodo: 3 frogressiva flodo: 4 frogressiva flodo: 5 frogressiva flodo: 6 frogressiva flodo: 7 frogressiva flodo: 7 frogressiva flodo: 8	Direz.X +3.15e+02 +3.15e+02 +1.08e+02 +4.22e+02 +2.09e+03 +2.51e+03 +1.91e+01 +2.53e+03 +9.85e+01 +2.63e+03 +9.43e+01 +2.72e+03 +3.10e+00 +2.72e+03 +5.26e+02	9 9 3 11 57 68 1 69 3 71 3 74 0 74	+1.03e+02 +1.03e+02 +2.38e+03 +2.49e+03 +5.19e+01 +2.54e+03 +1.78e+01 +2.55e+03 +4.21e+01 +2.60e+03 +4.84e+02 +3.08e+03 +1.31e+01 +3.09e+03 +4.86e+01	3 3 65 68 1 69 0 69 1 71 13 84 0 84	+9.21e-04 +9.21e-04 +4.99e-02 +5.08e-02 +1.13e-04 +5.09e-02 +1.52e-02 +6.61e-02 +1.60e-01 +2.26e-01 +8.63e-03 +2.34e-01 +3.02e-02 +2.65e-01 +6.17e-02		+2.34e+05 +2.34e+05 +6.09e+03 +2.40e+05 +1.73e+04 +2.58e+05 +6.29e+04 +3.21e+05 +1.01e+04 +3.31e+05 +2.48e+01 +3.31e+05 +2.25e+04 +3.53e+05 +1.84e+03
Modo Iodo: 1 rogressiva Iodo: 2 rogressiva Iodo: 3 rogressiva Iodo: 4 rogressiva Iodo: 5 rogressiva Iodo: 6 rogressiva Iodo: 7 rogressiva Iodo: 8 rogressiva	Direz.X +3.15e+02 +3.15e+02 +1.08e+02 +4.22e+02 +2.09e+03 +2.51e+03 +1.91e+01 +2.53e+03 +9.85e+01 +2.63e+03 +9.43e+01 +2.72e+03 +3.10e+00 +2.72e+03 +5.26e+02 +3.25e+03	9 9 3 11 57 68 1 69 3 71 3 74 0 74	+1.03e+02 +1.03e+02 +2.38e+03 +2.49e+03 +5.19e+01 +2.54e+03 +1.78e+01 +2.55e+03 +4.21e+01 +2.60e+03 +4.84e+02 +3.08e+03 +1.31e+01 +3.09e+03 +4.86e+01 +3.14e+03	3 3 65 68 1 69 0 69 1 71 13 84 0 84 1	+9.21e-04 +9.21e-04 +4.99e-02 +5.08e-02 +1.13e-04 +5.09e-02 +1.52e-02 +6.61e-02 +1.60e-01 +2.26e-01 +8.63e-03 +2.34e-01 +3.02e-02 +2.65e-01 +6.17e-02 +3.26e-01		+2.34e+05 +2.34e+05 +6.09e+03 +2.40e+05 +1.73e+04 +2.58e+05 +6.29e+04 +3.21e+05 +1.01e+04 +3.31e+05 +2.48e+01 +3.31e+05 +2.25e+04 +3.53e+05 +1.84e+03 +3.55e+05
Modo Modo: 1 Progressiva Modo: 2 Progressiva Modo: 3 Progressiva Modo: 4 Progressiva Modo: 5 Progressiva Modo: 6 Progressiva Modo: 7 Progressiva Modo: 8 Progressiva Modo: 8	Direz.X +3.15e+02 +3.15e+02 +1.08e+02 +4.22e+02 +2.09e+03 +2.51e+03 +1.91e+01 +2.53e+03 +9.85e+01 +2.63e+03 +9.43e+01 +2.72e+03 +3.10e+00 +2.72e+03 +5.26e+02	9 9 3 11 57 68 1 69 3 71 3 74 0 74 14 88 2	+1.03e+02 +1.03e+02 +2.38e+03 +2.49e+03 +5.19e+01 +2.54e+03 +1.78e+01 +2.55e+03 +4.21e+01 +2.60e+03 +4.84e+02 +3.08e+03 +1.31e+01 +3.09e+03 +4.86e+01	3 3 65 68 1 69 0 69 1 71 13 84 0 84 1 85	+9.21e-04 +9.21e-04 +4.99e-02 +5.08e-02 +1.13e-04 +5.09e-02 +1.52e-02 +6.61e-02 +1.60e-01 +2.26e-01 +8.63e-03 +2.34e-01 +3.02e-02 +2.65e-01 +6.17e-02		+2.34e+05 +2.34e+05 +6.09e+03 +2.40e+05 +1.73e+04 +2.58e+05 +6.29e+04 +3.21e+05 +1.01e+04 +3.31e+05 +2.48e+01 +3.31e+05 +2.25e+04 +3.53e+05 +1.84e+03
Modo flodo: 1 frogressiva flodo: 2 frogressiva flodo: 3 frogressiva flodo: 4 frogressiva flodo: 5 frogressiva flodo: 6 frogressiva flodo: 7 frogressiva flodo: 8 frogressiva flodo: 8 frogressiva flodo: 9	Direz.X +3.15e+02 +3.15e+02 +1.08e+02 +4.22e+02 +2.09e+03 +2.51e+03 +1.91e+01 +2.53e+03 +9.85e+01 +2.63e+03 +9.43e+01 +2.72e+03 +3.10e+00 +2.72e+03 +5.26e+02 +3.25e+03	9 9 3 11 57 68 1 69 3 71 3 74 0 74	+1.03e+02 +1.03e+02 +2.38e+03 +2.49e+03 +5.19e+01 +2.54e+03 +1.78e+01 +2.55e+03 +4.21e+01 +2.60e+03 +4.84e+02 +3.08e+03 +1.31e+01 +3.09e+03 +4.86e+01 +3.14e+03	3 3 65 68 1 69 0 69 1 71 13 84 0 84 1	+9.21e-04 +9.21e-04 +4.99e-02 +5.08e-02 +1.13e-04 +5.09e-02 +1.52e-02 +6.61e-02 +1.60e-01 +2.26e-01 +8.63e-03 +2.34e-01 +3.02e-02 +2.65e-01 +6.17e-02 +3.26e-01		+2.34e+05 +2.34e+05 +6.09e+03 +2.40e+05 +1.73e+04 +2.58e+05 +6.29e+04 +3.21e+05 +1.01e+04 +3.31e+05 +2.48e+01 +3.31e+05 +2.25e+04 +3.53e+05 +1.84e+03 +3.55e+05
Modo Modo: 1 Progressiva Modo: 2 Progressiva Modo: 3 Progressiva Modo: 4 Progressiva Modo: 5 Progressiva Modo: 6 Progressiva Modo: 7 Progressiva Modo: 8 Progressiva Modo: 8 Progressiva Modo: 9 Progressiva	Direz.X +3.15e+02 +3.15e+02 +1.08e+02 +4.22e+02 +2.09e+03 +2.51e+03 +1.91e+01 +2.53e+03 +9.85e+01 +2.63e+03 +9.43e+01 +2.72e+03 +3.10e+00 +2.72e+03 +5.26e+02 +3.25e+03 +6.50e+01	9 9 3 11 57 68 1 69 3 71 3 74 0 74 14 88 2	+1.03e+02 +1.03e+02 +2.38e+03 +2.49e+03 +5.19e+01 +2.54e+03 +1.78e+01 +2.55e+03 +4.21e+01 +2.60e+03 +4.84e+02 +3.08e+03 +1.31e+01 +3.09e+03 +4.86e+01 +3.14e+03 +4.60e+01	3 3 65 68 1 69 0 69 1 71 13 84 0 84 1 85	+9.21e-04 +9.21e-04 +4.99e-02 +5.08e-02 +1.13e-04 +5.09e-02 +1.52e-02 +6.61e-02 +1.60e-01 +2.26e-01 +8.63e-03 +2.34e-01 +3.02e-02 +2.65e-01 +6.17e-02 +3.26e-01 +1.07e-03		+2.34e+05 +2.34e+05 +6.09e+03 +2.40e+05 +1.73e+04 +2.58e+05 +6.29e+04 +3.21e+05 +1.01e+04 +3.31e+05 +2.48e+01 +3.31e+05 +2.25e+04 +3.53e+05 +1.84e+03 +3.55e+05 +9.32e+02
Modo Iodo: 1 rogressiva Iodo: 2 rogressiva Iodo: 3 rogressiva Iodo: 4 rogressiva Iodo: 5 rogressiva Iodo: 6 rogressiva Iodo: 7 rogressiva Iodo: 8 rogressiva Iodo: 9 rogressiva Iodo: 9 rogressiva Iodo: 10	Direz.X +3.15e+02 +3.15e+02 +1.08e+02 +4.22e+02 +2.09e+03 +2.51e+03 +1.91e+01 +2.53e+03 +9.85e+01 +2.63e+03 +9.43e+01 +2.72e+03 +3.10e+00 +2.72e+03 +5.26e+02 +3.25e+03 +6.50e+01 +3.32e+03	9 9 3 11 57 68 1 69 3 71 3 74 0 74 14 88 2 90	+1.03e+02 +1.03e+02 +2.38e+03 +2.49e+03 +5.19e+01 +2.54e+03 +1.78e+01 +2.55e+03 +4.21e+01 +2.60e+03 +4.84e+02 +3.08e+03 +1.31e+01 +3.09e+03 +4.86e+01 +3.14e+03 +4.60e+01 +3.19e+03	3 3 65 68 1 69 0 69 1 71 13 84 0 84 1 85 1	+9.21e-04 +9.21e-04 +4.99e-02 +5.08e-02 +1.13e-04 +5.09e-02 +1.52e-02 +6.61e-02 +1.60e-01 +2.26e-01 +8.63e-03 +2.34e-01 +3.02e-02 +2.65e-01 +6.17e-02 +3.26e-01 +1.07e-03 +3.27e-01		+2.34e+05 +2.34e+05 +6.09e+03 +2.40e+05 +1.73e+04 +2.58e+05 +6.29e+04 +3.21e+05 +1.01e+04 +3.31e+05 +2.48e+01 +3.31e+05 +2.25e+04 +3.53e+05 +1.84e+03 +3.55e+05 +9.32e+02 +3.56e+05
Modo Iodo: 1 rogressiva Iodo: 2 rogressiva Iodo: 3 rogressiva Iodo: 4 rogressiva Iodo: 5 rogressiva Iodo: 6 rogressiva Iodo: 7 rogressiva Iodo: 8 rogressiva Iodo: 9 rogressiva Iodo: 10 rogressiva	Direz.X +3.15e+02 +3.15e+02 +1.08e+02 +4.22e+02 +2.09e+03 +2.51e+03 +1.91e+01 +2.53e+03 +9.85e+01 +2.63e+03 +9.43e+01 +2.72e+03 +3.10e+00 +2.72e+03 +5.26e+02 +3.25e+03 +6.50e+01 +3.32e+03 +5.95e+01	9 9 3 11 57 68 1 69 3 71 3 74 0 74 14 88 2 90 2	+1.03e+02 +1.03e+02 +2.38e+03 +2.49e+03 +5.19e+01 +2.54e+03 +1.78e+01 +2.55e+03 +4.21e+01 +2.60e+03 +4.84e+02 +3.08e+03 +1.31e+01 +3.09e+03 +4.86e+01 +3.14e+03 +4.60e+01 +3.19e+03 +7.49e+01	3 3 65 68 1 69 0 69 1 71 13 84 0 84 1 85 1	+9.21e-04 +9.21e-04 +4.99e-02 +5.08e-02 +1.13e-04 +5.09e-02 +1.52e-02 +6.61e-02 +1.60e-01 +2.26e-01 +8.63e-03 +2.34e-01 +3.02e-02 +2.65e-01 +6.17e-02 +3.26e-01 +1.07e-03 +3.27e-01 +6.55e+00		+2.34e+05 +2.34e+05 +6.09e+03 +2.40e+05 +1.73e+04 +2.58e+05 +6.29e+04 +3.21e+05 +1.01e+04 +3.31e+05 +2.48e+01 +3.53e+05 +1.84e+03 +3.55e+05 +9.32e+02 +3.56e+05 +4.21e+02
Modo lodo: 1 rogressiva lodo: 2 rogressiva lodo: 3 rogressiva lodo: 4 rogressiva lodo: 5 rogressiva lodo: 6 rogressiva lodo: 7 rogressiva lodo: 8 rogressiva lodo: 9 rogressiva lodo: 10 rogressiva lodo: 10 rogressiva lodo: 11	Direz.X +3.15e+02 +3.15e+02 +1.08e+02 +4.22e+02 +2.09e+03 +2.51e+03 +1.91e+01 +2.53e+03 +9.43e+01 +2.72e+03 +3.10e+00 +2.72e+03 +5.26e+02 +3.25e+03 +6.50e+01 +3.32e+03 +5.95e+01 +3.38e+03 +3.59e+01	9 9 3 11 57 68 1 69 3 71 3 74 0 74 14 88 2 90 2 92 1	+1.03e+02 +1.03e+02 +2.38e+03 +2.49e+03 +5.19e+01 +2.54e+03 +1.78e+01 +2.55e+03 +4.21e+01 +2.60e+03 +4.84e+02 +3.08e+03 +1.31e+01 +3.09e+03 +4.60e+01 +3.14e+03 +7.49e+01 +3.26e+03 +4.30e+01	3 3 65 68 1 69 0 69 1 71 13 84 0 84 1 85 1 87 2 89	+9.21e-04 +9.21e-04 +4.99e-02 +5.08e-02 +1.13e-04 +5.09e-02 +1.52e-02 +6.61e-02 +1.60e-01 +2.26e-01 +8.63e-03 +2.34e-01 +3.02e-02 +2.65e-01 +6.17e-02 +3.26e-01 +1.07e-03 +3.27e-01 +6.55e+00 +6.87e+00 +2.93e+00		+2.34e+05 +2.34e+05 +6.09e+03 +2.40e+05 +1.73e+04 +2.58e+05 +6.29e+04 +3.21e+05 +1.01e+04 +3.31e+05 +2.48e+01 +3.31e+05 +2.25e+04 +3.53e+05 +1.84e+03 +3.55e+05 +9.32e+02 +3.56e+05 +4.21e+02 +3.56e+05 +1.81e+02
Modo Iodo: 1 rogressiva Iodo: 2 rogressiva Iodo: 3 rogressiva Iodo: 4 rogressiva Iodo: 5 rogressiva Iodo: 6 rogressiva Iodo: 7 rogressiva Iodo: 8 rogressiva Iodo: 9 rogressiva Iodo: 10 rogressiva Iodo: 10 rogressiva Iodo: 11 rogressiva	Direz.X +3.15e+02 +3.15e+02 +1.08e+02 +4.22e+02 +2.09e+03 +2.51e+03 +1.91e+01 +2.53e+03 +9.43e+01 +2.72e+03 +3.10e+00 +2.72e+03 +5.26e+02 +3.25e+03 +6.50e+01 +3.32e+03 +5.95e+01 +3.38e+03 +3.59e+01 +3.41e+03	9 9 3 11 57 68 1 69 3 71 3 74 0 74 14 88 2 90 2 92 1 93	+1.03e+02 +1.03e+02 +2.38e+03 +2.49e+03 +5.19e+01 +2.54e+03 +1.78e+01 +2.55e+03 +4.21e+01 +2.60e+03 +4.84e+02 +3.08e+03 +1.31e+01 +3.09e+03 +4.60e+01 +3.14e+03 +7.49e+01 +3.26e+03 +4.30e+01 +3.31e+03	3 3 65 68 1 69 0 69 1 71 13 84 0 84 1 85 1 87 2 89 1	+9.21e-04 +9.21e-04 +4.99e-02 +5.08e-02 +1.13e-04 +5.09e-02 +1.52e-02 +6.61e-02 +1.60e-01 +2.26e-01 +8.63e-03 +2.34e-01 +3.02e-02 +2.65e-01 +6.17e-02 +3.26e-01 +1.07e-03 +3.27e-01 +6.55e+00 +6.87e+00 +2.93e+00 +9.81e+00		+2.34e+05 +2.34e+05 +6.09e+03 +2.40e+05 +1.73e+04 +2.58e+05 +6.29e+04 +3.21e+05 +1.01e+04 +3.31e+05 +2.48e+01 +3.31e+05 +2.25e+04 +3.53e+05 +1.84e+03 +3.55e+05 +4.21e+02 +3.56e+05 +1.81e+02 +3.57e+05
Modo flodo: 1 frogressiva flodo: 2 frogressiva flodo: 3 frogressiva flodo: 4 frogressiva flodo: 5 frogressiva flodo: 6 frogressiva flodo: 7 frogressiva flodo: 8 frogressiva flodo: 9 frogressiva flodo: 10 frogressiva flodo: 11 frogressiva flodo: 11 frogressiva flodo: 12	Direz.X +3.15e+02 +3.15e+02 +1.08e+02 +4.22e+02 +2.09e+03 +2.51e+03 +1.91e+01 +2.53e+03 +9.43e+01 +2.72e+03 +3.10e+00 +2.72e+03 +5.26e+02 +3.25e+03 +5.95e+01 +3.32e+03 +5.95e+01 +3.38e+03 +3.59e+01 +3.41e+03 +1.75e-01	9 9 3 11 57 68 1 69 3 71 3 74 0 74 14 88 2 90 2 92 1 93 0	+1.03e+02 +1.03e+02 +2.38e+03 +2.49e+03 +5.19e+01 +2.54e+03 +1.78e+01 +2.55e+03 +4.21e+01 +2.60e+03 +4.84e+02 +3.08e+03 +1.31e+01 +3.09e+03 +4.66e+01 +3.14e+03 +4.60e+01 +3.19e+03 +7.49e+01 +3.26e+03 +4.30e+01 +3.31e+03 +1.57e-01	3 3 65 68 1 69 0 69 1 71 13 84 0 84 1 85 1 87 2 89 1	+9.21e-04 +9.21e-04 +4.99e-02 +5.08e-02 +1.13e-04 +5.09e-02 +1.52e-02 +6.61e-02 +1.60e-01 +2.26e-01 +8.63e-03 +2.34e-01 +3.02e-02 +2.65e-01 +6.17e-02 +3.26e-01 +1.07e-03 +3.27e-01 +6.55e+00 +6.87e+00 +2.93e+00 +9.81e+00 +1.12e-03		+2.34e+05 +2.34e+05 +6.09e+03 +2.40e+05 +1.73e+04 +2.58e+05 +6.29e+04 +3.21e+05 +1.01e+04 +3.31e+05 +2.48e+01 +3.53e+05 +1.84e+03 +3.55e+05 +9.32e+02 +3.56e+05 +4.21e+02 +3.56e+05 +1.81e+02 +3.57e+05 +1.68e+03
Modo Modo: 1 Progressiva Modo: 2 Progressiva Modo: 3 Progressiva Modo: 4 Progressiva Modo: 5 Progressiva Modo: 6 Progressiva Modo: 7 Progressiva Modo: 8 Progressiva Modo: 9 Progressiva Modo: 10 Progressiva Modo: 11 Progressiva Modo: 11 Progressiva Modo: 12 Progressiva	Direz.X +3.15e+02 +3.15e+02 +1.08e+02 +4.22e+02 +2.09e+03 +2.51e+03 +1.91e+01 +2.53e+03 +9.43e+01 +2.72e+03 +3.10e+00 +2.72e+03 +5.26e+02 +3.25e+03 +6.50e+01 +3.32e+03 +5.95e+01 +3.38e+03 +3.59e+01 +3.41e+03 +1.75e-01 +3.41e+03	9 9 3 11 57 68 1 69 3 71 3 74 0 74 14 88 2 90 2 92 1 93 0 93	+1.03e+02 +1.03e+02 +2.38e+03 +2.49e+03 +5.19e+01 +2.54e+03 +1.78e+01 +2.55e+03 +4.21e+01 +2.60e+03 +4.84e+02 +3.08e+03 +1.31e+01 +3.09e+03 +4.86e+01 +3.14e+03 +4.60e+01 +3.19e+03 +7.49e+01 +3.26e+03 +4.30e+01 +3.31e+03 +1.57e-01 +3.31e+03	3 3 65 68 1 69 0 69 1 71 13 84 0 84 1 85 1 87 2 89 1 90 0	+9.21e-04 +9.21e-04 +4.99e-02 +5.08e-02 +1.13e-04 +5.09e-02 +1.52e-02 +6.61e-02 +1.60e-01 +2.26e-01 +8.63e-03 +2.34e-01 +3.02e-02 +2.65e-01 +6.17e-02 +3.26e-01 +1.07e-03 +3.27e-01 +6.55e+00 +6.87e+00 +2.93e+00 +9.81e+00 +1.12e-03 +9.81e+00		+2.34e+05 +2.34e+05 +6.09e+03 +2.40e+05 +1.73e+04 +2.58e+05 +6.29e+04 +3.21e+05 +1.01e+04 +3.31e+05 +2.48e+01 +3.33e+05 +1.84e+03 +3.55e+05 +9.32e+02 +3.56e+05 +1.81e+02 +3.57e+05 +1.68e+03 +3.58e+05
Modo Modo: 1 Progressiva Modo: 2 Progressiva Modo: 3 Progressiva Modo: 4 Progressiva Modo: 5 Progressiva Modo: 6 Progressiva Modo: 7 Progressiva Modo: 9 Progressiva Modo: 10 Progressiva Modo: 11 Progressiva Modo: 12 Progressiva Modo: 12 Progressiva Modo: 13	Direz.X +3.15e+02 +3.15e+02 +1.08e+02 +4.22e+02 +2.09e+03 +2.51e+03 +1.91e+01 +2.53e+03 +9.85e+01 +2.63e+03 +9.43e+01 +2.72e+03 +3.10e+00 +2.72e+03 +5.26e+02 +3.25e+03 +6.50e+01 +3.32e+03 +5.95e+01 +3.38e+03 +3.59e+01 +3.41e+03 +1.75e-01 +3.41e+03 +2.10e+01	9 9 3 11 57 68 1 69 3 71 3 74 0 74 14 88 2 90 2 92 1 93 0 93 1	+1.03e+02 +1.03e+02 +2.38e+03 +2.49e+03 +5.19e+01 +2.54e+03 +1.78e+01 +2.55e+03 +4.21e+01 +2.60e+03 +4.84e+02 +3.08e+03 +1.31e+01 +3.09e+03 +4.86e+01 +3.14e+03 +4.60e+01 +3.19e+03 +7.49e+01 +3.26e+03 +4.30e+01 +3.31e+03 +1.57e-01 +3.31e+03 +3.12e+01	3 3 65 68 1 69 0 69 1 71 13 84 0 84 1 85 1 87 2 89 1 90 0	+9.21e-04 +9.21e-04 +4.99e-02 +5.08e-02 +1.13e-04 +5.09e-02 +1.52e-02 +6.61e-02 +1.60e-01 +2.26e-01 +8.63e-03 +2.34e-01 +3.02e-02 +2.65e-01 +6.17e-02 +3.26e-01 +1.07e-03 +3.27e-01 +6.55e+00 +6.87e+00 +2.93e+00 +9.81e+00 +1.12e-03 +9.81e+00 +1.16e+00		+2.34e+05 +2.34e+05 +6.09e+03 +2.40e+05 +1.73e+04 +2.58e+05 +6.29e+04 +3.21e+05 +1.01e+04 +3.31e+05 +2.48e+01 +3.31e+05 +2.25e+04 +3.53e+05 +1.84e+03 +3.55e+05 +4.21e+02 +3.56e+05 +1.81e+02 +3.57e+05 +1.68e+03 +3.58e+05 +9.88e+00
Modo Idodo: 1 rogressiva Idodo: 2 rogressiva Idodo: 3 rogressiva Idodo: 4 rogressiva Idodo: 5 rogressiva Idodo: 6 rogressiva Idodo: 7 rogressiva Idodo: 8 rogressiva Idodo: 9 rogressiva Idodo: 10 rogressiva Idodo: 11 rogressiva Idodo: 12 rogressiva Idodo: 12 rogressiva Idodo: 13 rogressiva	Direz.X +3.15e+02 +3.15e+02 +1.08e+02 +4.22e+02 +2.09e+03 +2.51e+03 +1.91e+01 +2.53e+03 +9.85e+01 +2.63e+03 +9.43e+01 +2.72e+03 +3.10e+00 +2.72e+03 +5.26e+02 +3.25e+03 +6.50e+01 +3.32e+03 +5.95e+01 +3.38e+03 +3.59e+01 +3.41e+03 +1.75e-01 +3.41e+03 +2.10e+01 +3.43e+03	9 9 3 11 57 68 1 69 3 71 3 74 0 74 14 88 2 90 2 92 1 93 0 93 1 93	+1.03e+02 +1.03e+02 +2.38e+03 +2.49e+03 +5.19e+01 +2.54e+03 +1.78e+01 +2.55e+03 +4.21e+01 +2.60e+03 +4.84e+02 +3.08e+03 +1.31e+01 +3.09e+03 +4.86e+01 +3.14e+03 +4.60e+01 +3.19e+03 +7.49e+01 +3.26e+03 +4.30e+01 +3.31e+03 +1.57e-01 +3.31e+03 +3.12e+01 +3.34e+03	3 3 65 68 1 69 0 69 1 71 13 84 0 84 1 85 1 87 2 89 1 90 0	+9.21e-04 +9.21e-04 +4.99e-02 +5.08e-02 +1.13e-04 +5.09e-02 +1.52e-02 +6.61e-02 +1.60e-01 +2.26e-01 +8.63e-03 +2.34e-01 +3.02e-02 +2.65e-01 +6.17e-02 +3.26e-01 +1.07e-03 +3.27e-01 +6.55e+00 +6.87e+00 +2.93e+00 +9.81e+00 +1.12e-03 +9.81e+00 +1.16e+00 +1.10e+01		+2.34e+05 +2.34e+05 +6.09e+03 +2.40e+05 +1.73e+04 +2.58e+05 +6.29e+04 +3.21e+05 +1.01e+04 +3.31e+05 +2.48e+01 +3.31e+05 +2.25e+04 +3.53e+05 +1.84e+03 +3.55e+05 +4.21e+02 +3.56e+05 +1.81e+02 +3.57e+05 +1.68e+03 +3.58e+05 +9.88e+00 +3.58e+05
Modo: 1 Progressiva Modo: 2 Progressiva Modo: 3 Progressiva Modo: 4 Progressiva Modo: 5 Progressiva Modo: 6 Progressiva Modo: 7 Progressiva Modo: 8 Progressiva Modo: 9 Progressiva Modo: 10 Progressiva Modo: 11 Progressiva Modo: 12 Progressiva Modo: 12 Progressiva Modo: 13 Progressiva	Direz.X +3.15e+02 +3.15e+02 +1.08e+02 +4.22e+02 +2.09e+03 +2.51e+03 +1.91e+01 +2.53e+03 +9.85e+01 +2.63e+03 +9.43e+01 +2.72e+03 +3.10e+00 +2.72e+03 +5.26e+02 +3.25e+03 +6.50e+01 +3.32e+03 +5.95e+01 +3.38e+03 +3.59e+01 +3.41e+03 +1.75e-01 +3.41e+03 +2.10e+01	9 9 3 11 57 68 1 69 3 71 3 74 0 74 14 88 2 90 2 92 1 93 0 93 1	+1.03e+02 +1.03e+02 +2.38e+03 +2.49e+03 +5.19e+01 +2.54e+03 +1.78e+01 +2.55e+03 +4.21e+01 +2.60e+03 +4.84e+02 +3.08e+03 +1.31e+01 +3.09e+03 +4.86e+01 +3.14e+03 +4.60e+01 +3.19e+03 +7.49e+01 +3.26e+03 +4.30e+01 +3.31e+03 +1.57e-01 +3.31e+03 +3.12e+01	3 3 65 68 1 69 0 69 1 71 13 84 0 84 1 85 1 87 2 89 1 90 0	+9.21e-04 +9.21e-04 +4.99e-02 +5.08e-02 +1.13e-04 +5.09e-02 +1.52e-02 +6.61e-02 +1.60e-01 +2.26e-01 +8.63e-03 +2.34e-01 +3.02e-02 +2.65e-01 +6.17e-02 +3.26e-01 +1.07e-03 +3.27e-01 +6.55e+00 +6.87e+00 +2.93e+00 +9.81e+00 +1.12e-03 +9.81e+00 +1.16e+00		+2.34e+05 +2.34e+05 +6.09e+03 +2.40e+05 +1.73e+04 +2.58e+05 +6.29e+04 +3.21e+05 +1.01e+04 +3.31e+05 +2.48e+01 +3.31e+05 +2.25e+04 +3.53e+05 +1.84e+03 +3.55e+05 +4.21e+02 +3.56e+05 +1.81e+02 +3.57e+05 +1.68e+03 +3.58e+05 +9.88e+00
Modo Modo: 1 Progressiva Modo: 2 Progressiva Modo: 3 Progressiva Modo: 4 Progressiva Modo: 5 Progressiva Modo: 6 Progressiva Modo: 7 Progressiva Modo: 9 Progressiva Modo: 10 Progressiva Modo: 12 Progressiva Modo: 12 Progressiva Modo: 13 Progressiva Modo: 13 Progressiva Modo: 13 Progressiva Modo: 14	Direz.X +3.15e+02 +3.15e+02 +1.08e+02 +4.22e+02 +2.09e+03 +2.51e+03 +1.91e+01 +2.53e+03 +9.85e+01 +2.63e+03 +9.43e+01 +2.72e+03 +3.10e+00 +2.72e+03 +5.26e+02 +3.25e+03 +6.50e+01 +3.32e+03 +5.95e+01 +3.38e+03 +3.59e+01 +3.41e+03 +1.75e-01 +3.41e+03 +2.10e+01 +3.43e+03	9 9 3 11 57 68 1 69 3 71 3 74 0 74 14 88 2 90 2 92 1 93 0 93 1 93	+1.03e+02 +1.03e+02 +2.38e+03 +2.49e+03 +5.19e+01 +2.54e+03 +1.78e+01 +2.55e+03 +4.21e+01 +2.60e+03 +4.84e+02 +3.08e+03 +1.31e+01 +3.09e+03 +4.86e+01 +3.14e+03 +4.60e+01 +3.19e+03 +7.49e+01 +3.26e+03 +4.30e+01 +3.31e+03 +1.57e-01 +3.31e+03 +3.12e+01 +3.34e+03	3 3 65 68 1 69 0 69 1 71 13 84 0 84 1 85 1 87 2 89 1 90 0	+9.21e-04 +9.21e-04 +4.99e-02 +5.08e-02 +1.13e-04 +5.09e-02 +1.52e-02 +6.61e-02 +1.60e-01 +2.26e-01 +8.63e-03 +2.34e-01 +3.02e-02 +2.65e-01 +6.17e-02 +3.26e-01 +1.07e-03 +3.27e-01 +6.55e+00 +6.87e+00 +2.93e+00 +9.81e+00 +1.12e-03 +9.81e+00 +1.16e+00 +1.10e+01		+2.34e+05 +2.34e+05 +6.09e+03 +2.40e+05 +1.73e+04 +2.58e+05 +6.29e+04 +3.21e+05 +1.01e+04 +3.31e+05 +2.48e+01 +3.31e+05 +2.25e+04 +3.53e+05 +1.84e+03 +3.55e+05 +4.21e+02 +3.56e+05 +1.81e+02 +3.57e+05 +1.68e+03 +3.58e+05 +9.88e+00 +3.58e+05
	Direz.X +3.15e+02 +3.15e+02 +1.08e+02 +4.22e+02 +2.09e+03 +2.51e+03 +1.91e+01 +2.53e+03 +9.85e+01 +2.63e+03 +9.43e+01 +2.72e+03 +3.10e+00 +2.72e+03 +5.26e+02 +3.25e+03 +6.50e+01 +3.32e+03 +5.95e+01 +3.38e+03 +3.59e+01 +3.41e+03 +1.75e-01 +3.41e+03 +2.10e+01 +3.43e+03 +2.10e+01 +3.43e+03 +2.16e-01	9 9 3 11 57 68 1 69 3 71 3 74 0 74 14 88 2 90 2 92 1 93 0 93 1 93 0	+1.03e+02 +1.03e+02 +2.38e+03 +2.49e+03 +5.19e+01 +2.54e+03 +1.78e+01 +2.55e+03 +4.21e+01 +2.60e+03 +4.84e+02 +3.08e+03 +1.31e+01 +3.09e+03 +4.86e+01 +3.14e+03 +4.60e+01 +3.19e+03 +7.49e+01 +3.26e+03 +4.30e+01 +3.31e+03 +1.57e-01 +3.31e+03 +3.12e+01 +3.34e+03 +2.50e-01	3 3 65 68 1 69 0 69 1 71 13 84 0 84 1 85 1 87 2 89 1 90 0	+9.21e-04 +9.21e-04 +4.99e-02 +5.08e-02 +1.13e-04 +5.09e-02 +1.52e-02 +6.61e-02 +1.60e-01 +2.26e-01 +8.63e-03 +2.34e-01 +3.02e-02 +2.65e-01 +6.17e-02 +3.26e-01 +1.07e-03 +3.27e-01 +6.55e+00 +6.87e+00 +2.93e+00 +9.81e+00 +1.12e-03 +9.81e+00 +1.16e+00 +1.10e+01 +7.99e+01		+2.34e+05 +2.34e+05 +6.09e+03 +2.40e+05 +1.73e+04 +2.58e+05 +6.29e+04 +3.21e+05 +1.01e+04 +3.31e+05 +2.48e+01 +3.31e+05 +2.25e+04 +3.53e+05 +1.84e+03 +3.55e+05 +3.26e+05 +4.21e+02 +3.56e+05 +1.81e+02 +3.57e+05 +1.68e+03 +3.58e+05 +9.88e+00 +3.58e+05 +7.91e+00

Frequenza

Periodo

Numero

Pulsazione

MASSA TOTALE EC	CCIT	ABIL	.E
-----------------	------	------	----

Direzione X Direzione Y Direzione Z Rotazione Z +3.68e+03 +3.68e+03 +3.68e+03 +3.69e+05

TRASLAZIONE CENTRO DELLE MASSE: -eY

FREQUENZE			AZIONE
FREGUENZE	PRUPRIE	DI OSCILL	AZIUNE

Numero	Pulsazione	Frequenza	Periodo	Precisione
1	8.582e+00	1.366e+00	7.321e-01	0.000e+00
2	1.077e+01	1.715e+00	5.832e-01	0.000e+00
3	1.147e+01	1.825e+00	5.479e-01	0.000e+00
4	2.560e+01	4.074e+00	2.454e-01	0.000e+00
5	3.683e+01	5.862e+00	1.706e-01	0.000e+00
6	3.893e+01	6.196e+00	1.614e-01	0.000e+00
7	4.188e+01	6.665e+00	1.500e-01	0.000e+00
8	4.540e+01	7.226e+00	1.384e-01	0.000e+00
9	4.853e+01	7.723e+00	1.295e-01	0.000e+00
10	5.107e+01	8.128e+00	1.230e-01	0.000e+00
11	5.306e+01	8.445e+00	1.184e-01	0.000e+00
12	6.097e+01	9.703e+00	1.031e-01	5.339e-20
13	6.428e+01	1.023e+01	9.774e-02	1.237e-17
14	6.967e+01	1.109e+01	9.019e-02	3.920e-15
15	7.479e+01	1.190e+01	8.401e-02	4.969e-12

COEFFICIENTI DI PARTECIPAZIONE MODALE

2 -1.081e+01 -4.853e+01 3 4.678e+01 -7.958e+00 4 1.163e+01 -3.929e+00 5 1.269e+01 1.373e+01 6 -1.260e+01 1.709e+01 7 1.297e+01 4.550e+00 8 3.394e+00 1.058e+01 9 3.777e+00 9.506e+00 10 -1.613e+01 3.361e+00 11 -5.252e+00 1.679e-01 12 2.709e-01 8.155e+00 13 -9.136e-02 1.342e+00	Modo	Direz.X	Direz.Y
3 4.678e+01 -7.958e+00 4 1.163e+01 -3.929e+00 5 1.269e+01 1.373e+01 6 -1.260e+01 1.709e+01 7 1.297e+01 4.550e+00 8 3.394e+00 1.058e+01 9 3.777e+00 9.506e+00 10 -1.613e+01 3.361e+00 11 -5.252e+00 1.679e-01 12 2.709e-01 8.155e+00 13 -9.136e-02 1.342e+00	1	1.366e+01	-1.088e+01
4 1.163e+01 -3.929e+00 5 1.269e+01 1.373e+01 6 -1.260e+01 1.709e+01 7 1.297e+01 4.550e+00 8 3.394e+00 1.058e+01 9 3.777e+00 9.506e+00 10 -1.613e+01 3.361e+00 11 -5.252e+00 1.679e-01 12 2.709e-01 8.155e+00 13 -9.136e-02 1.342e+00	2	-1.081e+01	-4.853e+01
5 1.269e+01 1.373e+01 6 -1.260e+01 1.709e+01 7 1.297e+01 4.550e+00 8 3.394e+00 1.058e+01 9 3.777e+00 9.506e+00 10 -1.613e+01 3.361e+00 11 -5.252e+00 1.679e-01 12 2.709e-01 8.155e+00 13 -9.136e-02 1.342e+00	3	4.678e+01	-7.958e+00
6 -1.260e+01 1.709e+01 7 1.297e+01 4.550e+00 8 3.394e+00 1.058e+01 9 3.777e+00 9.506e+00 10 -1.613e+01 3.361e+00 11 -5.252e+00 1.679e-01 12 2.709e-01 8.155e+00 13 -9.136e-02 1.342e+00	4	1.163e+01	-3.929e+00
7 1.297e+01 4.550e+00 8 3.394e+00 1.058e+01 9 3.777e+00 9.506e+00 10 -1.613e+01 3.361e+00 11 -5.252e+00 1.679e-01 12 2.709e-01 8.155e+00 13 -9.136e-02 1.342e+00	5	1.269e+01	1.373e+01
8 3.394e+00 1.058e+01 9 3.777e+00 9.506e+00 10 -1.613e+01 3.361e+00 11 -5.252e+00 1.679e-01 12 2.709e-01 8.155e+00 13 -9.136e-02 1.342e+00	6	-1.260e+01	1.709e+01
9 3.777e+00 9.506e+00 10 -1.613e+01 3.361e+00 11 -5.252e+00 1.679e-01 12 2.709e-01 8.155e+00 13 -9.136e-02 1.342e+00	7	1.297e+01	4.550e+00
10 -1.613e+01 3.361e+00 11 -5.252e+00 1.679e-01 12 2.709e-01 8.155e+00 13 -9.136e-02 1.342e+00	8	3.394e+00	1.058e+01
11 -5.252e+00 1.679e-01 12 2.709e-01 8.155e+00 13 -9.136e-02 1.342e+00	9	3.777e+00	9.506e+00
12 2.709e-01 8.155e+00 13 -9.136e-02 1.342e+00	10	-1.613e+01	3.361e+00
13 -9.136e-02 1.342e+00	11	-5.252e+00	1.679e-01
	12	2.709e-01	8.155e+00
14 4.193e-01 -4.597e-01	13	-9.136e-02	1.342e+00
	14	4.193e-01	-4.597e-01
15 6.251e-02 -2.317e-01	15	6.251e-02	-2.317e-01

MASSA ECCITATA

per quota Z maggiore di :0.00

Modo	Direz.X	%	Direz.Y	%	Direz.Z	%	Rotaz.Z
Modo: 1	+1.87e+02	5	+1.18e+02	3	+2.48e-03	0	+2.48e+05
Progressiva	+1.87e+02	5	+1.18e+02	3	+2.48e-03	0	+2.48e+05
Modo: 2	+1.17e+02	3	+2.36e+03	64	+4.19e-02	0	+9.18e+03
Progressiva	+3.04e+02	8	+2.47e+03	67	+4.43e-02	0	+2.57e+05
Modo: 3	+2.19e+03	60	+6.33e+01	2	+6.48e-03	0	+5.65e+03
Progressiva	+2.49e+03	68	+2.54e+03	69	+5.08e-02	0	+2.63e+05
Modo: 4	+1.35e+02	4	+1.54e+01	0	+6.19e-03	0	+7.08e+04
Progressiva	+2.63e+03	71	+2.55e+03	69	+5.70e-02	0	+3.34e+05
Modo: 5	+1.61e+02	4	+1.89e+02	5	+1.36e-01	0	+8.30e+03
Progressiva	+2.79e+03	76	+2.74e+03	75	+1.93e-01	0	+3.42e+05
Modo: 6	+1.59e+02	4	+2.92e+02	8	+3.52e-03	0	+4.48e+02
Progressiva	+2.95e+03	80	+3.03e+03	82	+1.96e-01	0	+3.42e+05
Modo: 7	+1.68e+02	5	+2.07e+01	1	+3.24e-01	0	+1.09e+04
Progressiva	+3.12e+03	85	+3.05e+03	83	+5.20e-01	0	+3.53e+05
Modo: 8	+1.15e+01	0	+1.12e+02	3	+2.28e-02	0	+1.81e+03
Progressiva	+3.13e+03	85	+3.17e+03	86	+5.43e-01	0	+3.55e+05
Modo: 9	+1.43e+01	0	+9.04e+01	2	+6.91e-05	0	+1.13e+02
Progressiva	+3.14e+03	85	+3.26e+03	89	+5.43e-01	0	+3.55e+05

Modo	Direz.X	%	Direz.Y	%	Direz.Z	%	Rotaz.Z
Modo: 10	+2.60e+02	7	+1.13e+01	0	+2.91e+00	0	+9.85e+02
Progressiva	+3.40e+03	92	+3.27e+03	89	+3.46e+00	0	+3.56e+05
Modo: 11	+2.76e+01	1	+2.82e-02	0	+6.20e+00	0	+4.82e+01
Progressiva	+3.43e+03	93	+3.27e+03	89	+9.65e+00	0	+3.56e+05
Modo: 12	+7.34e-02	0	+6.65e+01	2	+1.51e-03	0	+1.62e+01
Progressiva	+3.43e+03	93	+3.33e+03	91	+9.65e+00	0	+3.56e+05
Modo: 13	+8.35e-03	0	+1.80e+00	0	+9.02e-04	0	+6.32e+02
Progressiva	+3.43e+03	93	+3.34e+03	91	+9.66e+00	0	+3.57e+05
Modo: 14	+1.76e-01	0	+2.11e-01	0	+7.97e+01	2	+5.56e+00
Progressiva	+3.43e+03	93	+3.34e+03	91	+8.94e+01	2	+3.57e+05
Modo: 15	+3.91e-03	0	+5.37e-02	0	+3.13e+02	9	+9.17e-03
Progressiva	+3.43e+03	93	+3.34e+03	91	+4.03e+02	11	+3.57e+05

Direzione X	Direzione Y	Direzione Z	Rotazione Z
+3.68e+03	+3.68e+03	+3.68e+03	+3.69e+05

Figura 3 - 18.9: Modo 1 - T=0,744 s

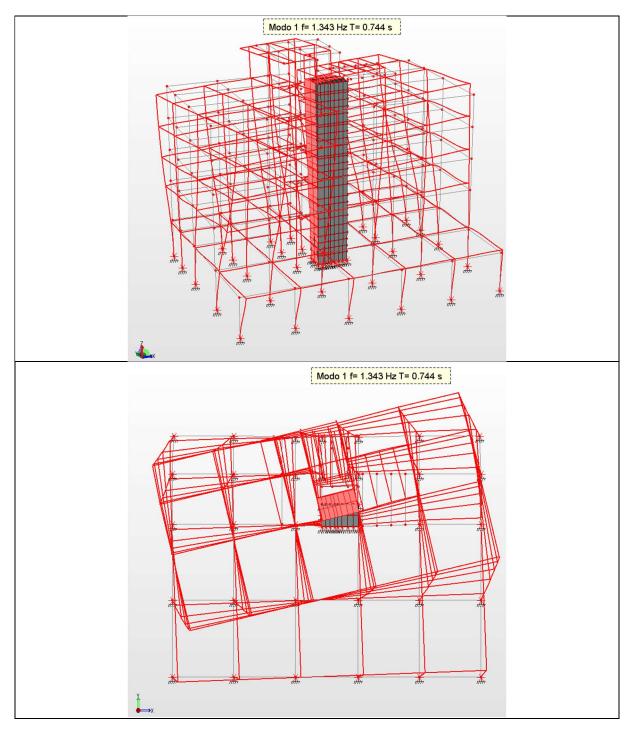
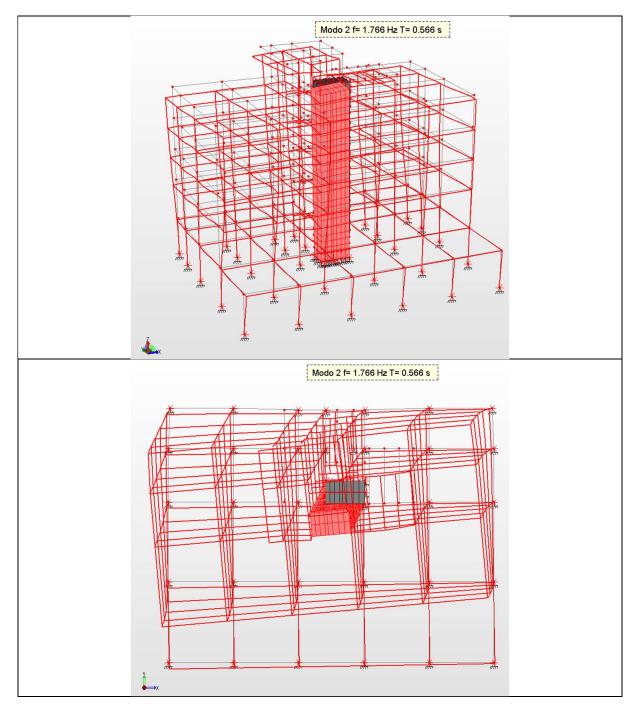



Figura 3 - 18.10: Modo 2 - T=0,566 s

Modo 3 f= 1.809 Hz T= 0.553 s Modo 3 f= 1.809 Hz T= 0.553 s

Figura 3 - 18.11: Modo 3 - T=0,553 s

A.3 - 18.5 Inviluppi dinamici in SLV

Con riferimento all'espressione sottostante, si riportano di seguito gli spostamenti massimi in SLV, in ottemperanza al paragrafo 7.3.3.3 del D.M. 17/01/2018.

Gli spostamenti d_E sotto l'azione sismica di progetto relativa allo SLV si ottengono moltiplicando per il fattore di duttilità in spostamento μ_d i valori d_{Ee} ottenuti dall'analisi lineare, dinamica o statica, secondo l'espressione seguente:

$$d_{E} = \pm \mu_{d} \cdot d_{E_{0}} \qquad [7.3.8]$$

Dove:

$$\begin{split} \mu_{\text{d}} &= q & \text{se } T_{\text{l}} \geq T_{\text{c}} \\ \mu_{\text{d}} &= 1 + \left(q - 1\right) \cdot \frac{T_{\text{c}}}{T_{\text{l}}} & \text{se } T_{\text{l}} < T_{\text{c}} \end{split} \tag{7.3.9}$$

In ogni caso $\mu_d \le 5q - 4$.

q= 1,07 (fattore di comportamento utilizzato),

 T_C = 0,34 s (punto caratteristico dello spettro di risposta in SLV),

 $T_{1 \text{ X}} = 0,556 \text{ s}$ (periodo di vibrazione della struttura in esame calcolato a seguito di analisi)

 $T_{1 \text{ Y}} = 0,584 \text{ s}$ (periodo di vibrazione della struttura in esame calcolato a seguito di analisi)

In particolare, a seguito dell'analisi eseguita, si ha:

 $T_{1 X} > T_{C}$

 $T_{1 Y} > T_{C}$, per cui si ottiene:

 $\mu_{d X} = q = 1,07$

 $\mu_{dY} = q = 1,07$

In ogni caso: $\mu_d < 5q - 4 = 1,35$.

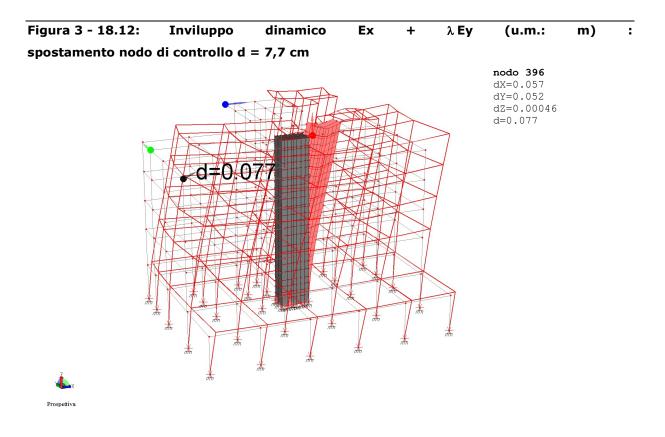
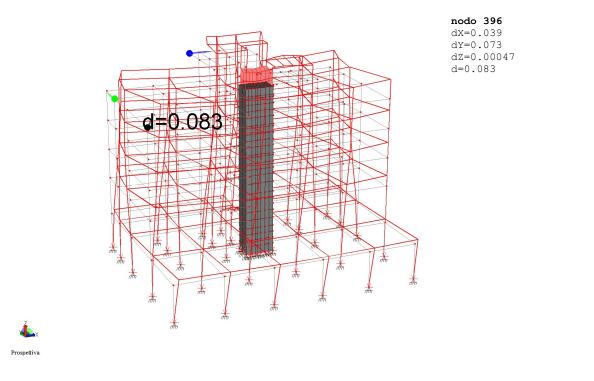



Figura 3 - 18.13: Inviluppo dinamico λ Ex + Ey (u.m.: m) spostamento nodo di controllo d = 8,3 cm

A.3 - 18.6 Controllo deformabilità torsionale

```
Nome archivio di lavoro
Intestazione del lavoro
                                                                                             edificio 1C
Edificio E1-C
Tipo di analisi
Unità di misura delle Forze
Unità di misura Lunghezze
                                                                                             Statica e Dinamica
Piano rigido 1 alla quota: 4.090000
                                                                                      : X=13.593800 ; Y=10.999700
: 1163.529053
Massa
Rigidezza laterale 1^ direzione principale [kN/m] Rigidezza laterale 2^ direzione principale [kN/m] Rigidezza torsionale [kN/m] Raggio torsionale 1^ direzione principale [-] Raggio torsionale 2^ direzione principale [-] Momento d'inerzia polare
                                                                                       : 1.87887e+08
                                                                                      : 5.05867e+08
: 1.43612
                                                                                      · 1 64085
                                                                                      : 10.9654
Indicatore di deformabilità torsionale - $7.4.3.1 NTC/2018
                                                                                       : 0.0171529 < 1.0
Piano rigido 2 alla quota: 8.430000
Nodo master
                                                                                       : X=13.565300 ; Y=13.991400
                                                                                       : 629.271606
Rigidezza laterale 1^ direzione principale [kN/m] Rigidezza laterale 2^ direzione principale [kN/m]
                                                                                      : 2.89175e+07
Rigidezza torsionale [KN/m]
Raggio torsionale 1^ direzione principale [-]
Raggio torsionale 2^ direzione principale [-]
                                                                                       · 1 64921e+08
                                                                                       : 2.38813
Momento d'inerzia polare
                                                                                       : 9.85938
Indicatore di deformabilità torsionale - §7.4.3.1 NTC/2018
(r^2) / (ls^2)
                                                                                       : 0.0577234 < 1.0
Piano rigido 3 alla quota: 11.780000
                                                                                      : X=13.545200 ; Y=13.973100
Nodo master
Massa
                                                                                       : 606.531494
Rigidezza laterale 1^ direzione principale [kN/m]
Rigidezza laterale 2^ direzione principale [kN/m]
Rigidezza torsionale [kN/m]
Raggio torsionale 1^ direzione principale [-]
Raggio torsionale 2^ direzione principale [-]
                                                                                      : 6.62883e+08
                                                                                      : 6.08125e+08
: 1.18071e+09
                                                                                      : 1.33461
: 1.3934
Momento d'inerzia polare
                                                                                      : 59543.9
Indicatore di deformabilità torsionale - §7.4.3.1 NTC/2018
                                                                                       : 0.0181436 < 1.0
(r^2) / (ls^2)
Piano rigido 4 alla quota: 15.130000
                                                                                      : X=13.548300 ; Y=13.973500
 Nodo master
Massa
                                                                                       : 607.238892
Rigidezza laterale 1^ direzione principale [kN/m]
Rigidezza laterale 2^ direzione principale [kN/m]
Rigidezza torsionale [kN/m]
Raggio torsionale 1^ direzione principale [-]
Raggio torsionale 2^ direzione principale [-]
                                                                                       : 6.08125e+08
                                                                                       : 1.33461
                                                                                       : 1.3934
Momento d'inerzia polare
                                                                                       : 59549.8
                                                                                        : 9.90286
Indicatore di deformabilità torsionale - \$7.4.3.1 NTC/2018 (r^2) / (ls^2) : 0.0
                                                                                       : 0.0181629 < 1.0
Piano rigido 5 alla guota: 18.480000
Nodo master
Massa
                                                                                      : X=13.563200 ; Y=14.213500
                                                                                      : 386.166992
Rigidezza laterale 1^ direzione principale [kN/m]
Rigidezza laterale 2^ direzione principale [kN/m]
Rigidezza torsionale [kN/m]
Raggio torsionale 1^ direzione principale [-]
Raggio torsionale 2^ direzione principale [-]
Momento d'inerzia polare
                                                                                       : 6.18963e+08
                                                                                       : 1.16932e+09
                                                                                       : 1.37447
                                                                                       : 9.76233
Indicatore di deformabilità torsionale - $7.4.3.1 NTC/2018
 (r^2) / (ls^2)
                                                                                       : 0.0197764 < 1.0
Piano rigido 6 alla quota: 21.830000
                                                                                      : X=13.140300 ; Y=17.438900
Nodo master
Massa
                                                                                       : 44.118801
Rigidezza laterale 1^ direzione principale [kN/m] Rigidezza laterale 2^ direzione principale [kN/m]
                                                                                      : 6.08112e+06
                                                                                       : 1.94086e+06
Rigidezza torsionale [kN/m]
Raggio torsionale 1^ direzione principale [-]
Raggio torsionale 2^ direzione principale [-]
                                                                                       : 1.16507e+07
                                                                                       : 2.45007
: 514.877
Momento d'inerzia polare
                                                                                       : 3.41617
```

Indicatore di deformabilità torsionale - §7.4.3.1 NTC/2018 (r^2) / (ls^2) $$: 0.10 : 0.164168 < 1.0

Piani rigidi con r^2/ls^2 < 1.0
Piano 1 alla quota 4.090000
Piano 2 alla quota 8.430000
Piano 3 alla quota 11.780000
Piano 4 alla quota 15.130000
Piano 5 alla quota 18.480000
Piano 6 alla quota 21.830000

LA STRUTTURA È TORSIONALMENTE DEFORMABILE

A.3 - 18.7 Analisi del secondo ordine

```
Nome archivio di lavoro
Nome archivio di lavoro
Intestazione del lavoro
Tipo di analisi
Unita' di misura delle Forze
Unita' di misura Lunghezze
Sisma lungo l'asse Z
Combinazione dei modi
Combinazione componenti azioni sismiche
                                                                                                 Edificio E1-C
Statica e Dinamica
                                                                                                   kN
                                                                                                  m
No
                                                                                        : CQC
: Eurocodice 8
: 0.3
                                                                                          : 0.3
μ
*** Gruppo di copertura: Travi livello P06
```

C.C		$\Delta_{\mathtt{X}}$ [cm]	Δ_{Y} [cm]
1	$\texttt{Statica+}(\texttt{EX+}\lambda \texttt{*EY})$	5.76	2.76
1	$\texttt{Statica+}(\lambda \texttt{*EX+EY})$	3.16	5.60
2	$\texttt{Statica+}(\texttt{EX+}\lambda \texttt{*EY})$	5.76	2.76
2	$\texttt{Statica+}(\lambda \texttt{*EX+EY})$	3.16	5.60
3		-0.01	-0.11
4		-0.01	-0.11
5		-0.02	-0.09
6		-0.02	-0.06
7		-0.01	-0.06
8		-0.01	-0.07
9		-0.01	-0.07
10		-0.01	-0.06
11		-0.01	-0.07
12		-0.01	-0.06

*** Piano rigido alla quota: 18.480 Travi livello P05

Piano rigido su	periore: Tr	avi livell	o P06 alt	tezza inter	piano: 3.35				
C.C	$\Delta_{\mathtt{X}}$ [cm]	$\Delta_{ extsf{Y}}$ [cm]	d_{rx} [cm]	dry [cm]	FX	FY	FZ	ϑ_x	ϑ_{-} Y
1 Statica+(EX+ λ *EY)	4.94	2.92	-0.82	0.16	2132.78	1306.40	688.14	0.00	0.00
1 Statica+(λ *EX+EY)	2.70	5.32	-0.46	-0.28	2121.70	1674.98	688.14	0.00	0.00
2 Statica+(EX+ λ *EY)	4.94	2.92	-0.82	0.16	2132.78	1306.40	688.14	0.00	0.00
2 Statica+(λ*EX+EY)	2.70	5.32	-0.46	-0.28	2121.70	1674.98	688.14	0.00	0.00
3	0.05	-0.09	0.06	0.01	16.51	52.80	988.27	0.00	0.00
4	0.05	-0.09	0.06	0.01	19.02	53.64	1014.14	0.00	0.00
5	0.04	-0.08	0.06	0.01	14.89	41.88	936.15	0.00	0.00
6	0.03	-0.05	0.05	0.01	6.18	31.18	944.16	0.00	0.00
7	0.03	-0.06	0.04	0.01	9.28	30.93	688.14	0.00	0.00
8	0.04	-0.06	0.05	0.01	13.27	36.52	740.15	0.00	0.00
9	0.03	-0.06	0.05	0.01	13.99	36.84	748.81	0.00	0.00
10	0.03	-0.05	0.04	0.01	10.27	28.81	688.15	0.00	0.00
11	0.03	-0.06	0.04	0.01	9.55	32.34	695.08	0.00	0.00
12	0.03	-0.06	0.04	0.01	9.28	30.93	688.14	0.00	0.00

*** Piano rigido alla quota: 15.130 Travi livello P04

	Piano rigido sup	eriore: Tr	avi livell	o PO5 alt	ezza inter	piano: 3.35				
C.C		$\Delta_{\mathtt{X}}$ [cm]	$\Delta_{\underline{\hspace{0.1cm}}}$ Y [cm]	d_{rx} [cm]	dry [cm]	FX	FY	FZ	9_x	ϑ_{-} Y
1	$\texttt{Statica+}(\texttt{EX+}\lambda \texttt{*EY})$	4.01	2.46	-0.93	-0.46	5108.23	3556.76	5057.81	0.00	0.00
1	$\texttt{Statica+}(\lambda \texttt{*EX+EY})$	2.27	4.42	-0.43	-0.90	4092.37	5704.97	5057.81	0.00	0.00
2	$\texttt{Statica+}(\texttt{EX+}\lambda \texttt{*EY})$	4.01	2.46	-0.93	-0.46	5108.23	3556.76	5058.23	0.00	0.00
2	Statica+(λ *EX+EY)	2.27	4.42	-0.43	-0.90	4092.37	5704.97	5058.23	0.00	0.00
3		0.04	-0.07	-0.01	0.02	36.46	38.95	7266.50	0.00	0.00
4		0.04	-0.07	-0.01	0.02	36.22	39.29	7440.75	0.00	0.00
5		0.03	-0.06	-0.01	0.02	28.10	27.21	6874.74	0.00	0.00
6		0.02	-0.04	-0.01	0.01	20.64	22.98	5314.17	0.00	0.00
7		0.02	-0.04	-0.01	0.01	21.25	21.61	5057.81	0.00	0.00
8		0.03	-0.05	-0.01	0.02	25.00	27.25	5411.50	0.00	0.00
9		0.03	-0.05	-0.01	0.02	24.89	27.37	5474.13	0.00	0.00
10		0.02	-0.04	-0.01	0.01	19.60	19.22	5043.67	0.00	0.00
11		0.03	-0.04	-0.01	0.01	22.39	23.12	5110.25	0.00	0.00
12		0.02	-0.04	-0.01	0.01	21.25	21.61	5057.81	0.00	0.00

*** Piano rigido alla quota: 11.780 Travi livello PO3

Piano rigido sur	periore: Tr	avi livell	o PO4 alt	tezza inter	piano: 3.35				
C.C	Δ_{X} [cm]	Δ_{Y} [cm]	drx [cm]	dry [cm]	FX	FY	FZ	ϑ_x	ϑ_{-} Y
1 Statica+(EX+ λ *EY)	2.97	1.90	-1.04	-0.56	8302.69	5005.44	11361.09	0.00	0.00
1 Statica+(λ *EX+EY)	1.75	3.36	-0.52	-1.07	6579.35	6821.87	11361.09	0.00	0.01
2 Statica+(EX+ λ *EY)	2.97	1.90	-1.04	-0.56	8302.69	5005.44	11361.36	0.00	0.00
2 Statica+(λ *EX+EY)	1.75	3.36	-0.52	-1.07	6579.35	6821.87	11361.36	0.00	0.01
3	0.03	-0.05	-0.01	0.02	38.68	40.18	17059.35	0.00	0.00
4	0.03	-0.05	-0.01	0.02	38.53	40.51	17232.29	0.00	0.00
5	0.02	-0.04	-0.01	0.02	30.40	28.03	15333.79	0.00	0.00
6	0.02	-0.03	-0.01	0.01	22.50	23.34	11616.97	0.00	0.00
7	0.02	-0.03	-0.01	0.01	22.89	22.25	11361.09	0.00	0.00
8	0.02	-0.03	-0.01	0.02	26.65	28.04	12336.73	0.00	0.00
9	0.02	-0.03	-0.01	0.02	26.61	28.16	12399.49	0.00	0.00
10	0.02	-0.03	-0.01	0.01	21.25	19.78	11079.95	0.00	0.00
11	0.02	-0.03	-0.01	0.01	24.04	23.80	11590.88	0.00	0.00
12	0.02	-0.03	-0.01	0.01	22.89	22.25	11361.09	0.00	0.00

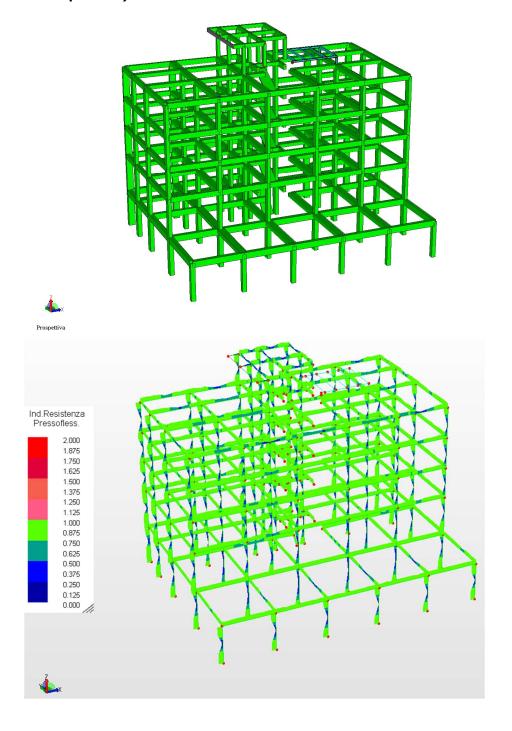
*** Piano rigido alla quota: 8.430 Travi livello PO2

*** Piano rigido alla	quota: 8.4	30 Travi l	ivello	P02										
Piano rigido su							.35				0		0	
C.C	_	Δ_{Y} [cm]					_	FY		F2	_		9_Y	
1 Statica+(EX+λ*EY)		1.24	-1.08		.66	10664.4		6987.8		7657.			0.00	
1 Statica+ $(\lambda * EX + EY)$ 2 Statica+ $(EX + \lambda * EY)$		2.16 1.24	-0.60 -1.08		.19	8210.3 10664.4		9234.8 6987.8		7657. 7656.			0.01	
2 Statica+(λ*EX+EY)		2.16	-0.60		.19	8210.3		9234.8		7656.			0.01	
3	0.02	-0.02	-0.01	. 0	.02	66.93	3	49.0	08 2	6838.	73 0.00) (0.00	
4 5	0.02	-0.02 -0.02	-0.01 -0.01		.02	66.83 54.2		49.3 31.7		7013. 3783.			0.00 0.00	
6	0.01	-0.01	-0.01		.01	39.9		27.3		7913.			0.00	
7 8	0.01	-0.02	-0.01		.01	40.3		26.1		7657.			0.00	
9	0.01	-0.02 -0.02	-0.01 -0.01		.02	46.4		34.0 34.1		9254. 9316.			0.00	
10	0.01	-0.01	-0.01		.01	38.0		22.3		7109.			0.00	
11 12	0.01	-0.02 -0.02	-0.01 -0.01		.01	42.12		26.1		8064. 7657.			0.00 0.00	
*** Piano rigido alla	quota: 4.	090 Travi	livello	P01										
-	_						2.4							
Piano rigido su C.C		ravi liveli $\Delta_{oldsymbol{\Delta}}$ [cm]					. 34	FY		F2	2 9 х		9 ч	
1 Statica+(EX+λ*EY)	_	0.43	-1.22		.81	13337.1	9	8770.4		4308.	_		0.01	
1 Statica+(λ*EX+EY)		0.71	-0.68		.45	10623.8		11659.9		4308.			0.01	
2 Statica+(EX+λ*EY)	0.67	0.43	-1.22	2 -0	.81	13337.1	9	8770.4	18 2	4309.	21 0.03	L	0.01	
2 Statica+(λ*EX+EY)		0.71	-0.68		.45	10623.8		11659.9		4309.			0.01	
3 4	0.00	-0.01 -0.01	-0.01 -0.01		.02	93.7 93.6		19.5 19.7		7109. 7283.			0.00	
5	0.00	-0.00	-0.01		.02	66.3		7.7		2710.			0.00	
6 7	0.00	-0.00 -0.00	-0.01 -0.01		.01	59.13 59.30		9.4 8.9		4564. 4308.			0.00	
8	0.00	-0.00	-0.01	. 0	.01	65.8		13.6	57 2	4308. 6531.			0.00	
9 10	0.00	-0.00 -0.00	-0.01 -0.01		.01	65.85 47.6		13.7		6595. 3492.			0.00 0.00	
11	0.00	-0.00	-0.01		.01	60.8		10.2		4895.			0.00	
12	0.00	-0.00	-0.01	. 0	.01	59.30)	8.9	92 2	4308.	91 0.00) (0.00	
*** analisi alla quot	a: 0.000													
Piano rigido su	periore: T	ravi livell	o P01	altezza	a in	terpiano: 4	.09							
C.C	Δ_{X} [cm]	Δ_{Y} [cm]	d _{rx} [c	m] dry	[cm] FX		FY		F2	2 9_x		9_Y	
1 Statica+(EX+λ*EY)		0.00	-0.67		.43	14411.2		7897.2		6445.			0.00	
1 Statica+(λ*EX+EY)	0.00	0.00	-0.47		.71	10448.3		11627.9		6445.			0.01	
2 Statica+ (EX+ λ *EY) 2 Statica+ (λ *EX+EY)		0.00	-0.67 -0.47		.43	14411.2		7897.2 11627.9		5888. 5888.			0.00	
3	-0.00	-0.00	-0.00		.01	0.1		2.3		5598.			0.00	
4 5	-0.00 0.00	0.00	-0.00		.01	0.1		2.3		5771. 0489.			0.00	
6	0.00	0.00	-0.00		.00	0.1		1.1		6702.			0.00	
7 8	-0.00 0.00	-0.00 -0.00	-0.00		.00	0.1		1.1		6445. 9672.			0.00	
9	0.00	0.00	-0.00		.00	0.1		1.5		9740.			0.00	
10 11	0.00	-0.00 0.00	-0.00		.00	0.03		0.7		6161. 7284.			0.00	
12	-0.00	-0.00	-0.00		.00	0.1		1.1		6445.			0.00	
RIPARTIZION	E DELLE AZ	ZIONI TAGLIA	NTI AI	PIANI										
*** Piano rigido alla C.C	quota: 18 FX(Tot)	3. 480 Travi FX(Pil.)			(%)	FX(Pareti)	(%)	FY(Tot)	FY(Pil.)	(%)	FY(Setti)	(웅)	FY(Pareti)	(%)
1 Statica+(EX+ λ *EY)	2133	600	28	0	0	1533	72	1306	424	32	0	0	882	68
1 Statica+(λ*EX+EY)	2122	363	17	0	0		83	1675	595	35	0	0		65
2 Statica+(EX+λ*EY)	2133	600	28	0	0		72	1306	424	32	0	0		
2 Statica+(λ*EX+EY)	2122	363	17	0	0	1759	83	1675	595	35	0	0	1080	65
*** Piano rigido alla C.C	quota: 15 FX(Tot)	5.130 Travi FX(Pil.)			(%)	FX(Pareti)	(%)	FY (Tot)	FY(Pil)	(%)	FY(Setti)	(%)	FY(Pareti)	(%)
1 Statica+(EX+λ*EY)	5108	2735	54	114	2		44	3557	1910	54	329	9		
1 Statica+(λ*EX+EY)	4092	1419	35	106	3	2568	63	5705	3316	58	637	11	1752	31
2 Statica+(EX+ λ *EY)	5108	2735	54	114	2	2259	44	3557	1910	54	329	9	1317	37
2 Statica+(λ *EX+EY)	4092	1419	35	106	3	2568	63	5705	3316	58	637	11	1752	31
*** Piano rigido alla														
<pre>C.C 1 Statica+(EX+λ*EY)</pre>	FX(Tot) 8303	FX(Pil.) 2743	(%) FX	(Setti) 131	(%) 2	FX(Pareti) 5428	(%) 65	FY(Tot) 5005	FY(Pil.) 2188	(%) 44	FY(Setti)	(%)	FY(Pareti) 2442	
1 Statica+(Δ*EX+EY)	6579	1705	26	117	2		72	6822	3518	52	735	11	2569	
2 Statica+(EX+λ*EY)	8303	2743	33	131	2		65	5005	2188		376	8		
2 Statica+(λ *EX+EY)	6579	1705	26	117	2	4757	72	6822	3518	52	735	11	2569	38
*** Piano rigido alla														
C.C	FX(Tot)	FX (Pil.)					(%)						FY(Pareti)	
<pre>1 Statica+(EX+λ*EY) 1 Statica+(λ*EX+EY)</pre>	10664 8210	3109 2119	29 26	146 133	1 2		69 73	6988 9235	2750 4326	39 47	395 788	6 9		
2 Statica+(EX+λ*EY)	10664	3109	29	146	1		69	6988	2750	39	395	6		
2 Statica+(λ*EX+EY)	8210		26	133	2		73	9235	4326		788	9		
*** Piano rigido alla	quota: 4.	090 Travi	livello	P01										
c.c	FX(Tot)	FX(Pil.)	(%) FX	(Setti)		FX(Pareti)							FY(Pareti)	
1 Statica+(EX+λ*EY)	13337	2371		74	1		82	8770	2799		245	3	5727	
Commessa: CN	AK.005-0	1-01.22.DE	⊦ D.			T.01.RE.01 _. e strutture.			R	ev 0	U			pag. A.3-149
			I	C	Juil	o othaccare.	J J C I		I		I		1	

1 Statica+(λ *EX+EY)	10624	1869	18	69	1	8685	82	11660	4223	36	517	4	6920	59
2 Statica+(EX+ λ *EY)	13337	2371	18	74	1	10893	82	8770	2799	32	245	3	5727	65
2 Statica+(λ *EX+EY)	10624	1869	18	69	1	8685	82	11660	4223	36	517	4	6920	59
*** Piano rigido alla	quota: 0.	000												
C.C	FX(Tot)	FX(Pil.)	(%)	FX(Setti)	(%)	FX(Pareti)	(%)	FY(Tot)	FY(Pil.)	(%)	FY(Setti)	(%)	FY(Pareti)	(%)
1 Statica+(EX+ λ *EY)	14411	3771	26	171	1	10469	73	7897	3231	41	98	1	4568	58
1 Statica+(λ *EX+EY)	10448	2964	28	135	1	7349	70	11628	4943	43	194	2	6491	56
2 Statica+(EX+ λ *EY)	14411	3771	26	171	1	10469	73	7897	3231	41	98	1	4568	58
2 Statica+(λ*EX+EY)	10448	2964	28	135	1	7349	70	11628	4943	43	194	2	6491	56

A.3 - 18.8 Controllo azioni taglianti

RIPARTIZIONE DELLE AZIONI TAGLIANTI AI PIANI


*** Piano rigido alla	quota: 18	3.480 Travi	. liv	rello P05										
c.c	FX(Tot)	FX(Pil.)	(%)	FX(Setti)	(%)	FX(Pareti)	(%)	FY(Tot)	FY(Pil.)	(%)	FY(Setti)	(%)	FY(Pareti)	(%)
1 Statica+(EX+λ*EY)	2133	600	28	0	0	1533	72	1306	424	32	0	0	882	68
1 Statica+(λ *EX+EY)	2122	363	17	0	0	1759	83	1675	595	35	0	0	1080	65
2 Statica+(EX+ λ *EY)	2133	600	28	0	0	1533	72	1306	424	32	0	0	882	68
2 Statica+(λ*EX+EY)	2122	363	17	0	0	1759	83	1675	595	35	0	0	1080	65
*** Piano rigido alla	guota: 15	5.130 Travi	. liv	rello P04										
c.c	FX(Tot)	FX(Pil.)	(%)	FX(Setti)	(%)	FX(Pareti)	(%)	FY(Tot)	FY(Pil.)	(%)	FY(Setti)	(%)	FY(Pareti)	(%)
1 Statica+(EX+ λ *EY)	5108	2735	54	114	2	2259	44	3557	1910	54	329	9	1317	37
1 Statica+(λ *EX+EY)	4092	1419	35	106	3	2568	63	5705	3316	58	637	11	1752	31
2 Statica+(EX+ λ *EY)	5108	2735	54	114	2	2259	44	3557	1910	54	329	9	1317	37
2 Statica+(λ *EX+EY)	4092	1419	35	106	3	2568	63	5705	3316	58	637	11	1752	31
*** Piano rigido alla	quota: 11	L.780 Travi	. liv	rello P03										
c.c	FX(Tot)	FX(Pil.)	(%)	FX(Setti)	(%)	FX(Pareti)	(%)	FY(Tot)	FY(Pil.)	(%)	FY(Setti)	(%)	FY(Pareti)	(%)
1 Statica+(EX+ λ *EY)	8303	2743	33	131	2	5428	65	5005	2188	44	376	8	2442	49
1 Statica+(λ *EX+EY)	6579	1705	26	117	2	4757	72	6822	3518	52	735	11	2569	38
2 Statica+(EX+λ*EY)	8303	2743	33	131	2	5428	65	5005	2188	44	376	8	2442	49
2 Statica+(λ *EX+EY)	6579	1705	26	117	2	4757	72	6822	3518	52	735	11	2569	38
*** Piano rigido alla	quota: 8.	.430 Travi	live	11o P02										
*** Piano rigido alla	quota: 8. FX(Tot)	.430 Travi FX(Pil.)		ello PO2 FX(Setti)	(%)	FX(Pareti)	(%)	FY(Tot)	FY(Pil.)	(%)	FY(Setti)	(%)	FY(Pareti)	(%)
C.C 1 Statica+(EX+λ*EY)					(%) 1	FX(Pareti) 7410	(%) 69	FY(Tot) 6988	FY(Pil.) 2750	(%) 39	FY(Setti)	(%) 6	FY(Pareti) 3843	(%) 55
C.C 1 Statica+(EX+ λ *EY) 1 Statica+(λ *EX+EY)	FX(Tot)	FX(Pil.)	(%)	FX(Setti)								,	,	,
C.C 1 Statica+(EX+λ*EY)	FX(Tot) 10664	FX(Pil.) 3109	(%) 29	FX(Setti) 146	1	7410	69	6988	2750	39	395	6	3843	55
C.C 1 Statica+(EX+ λ *EY) 1 Statica+(λ *EX+EY)	FX(Tot) 10664 8210	FX(Pil.) 3109 2119	(%) 29 26	FX(Setti) 146 133	1 2	7410 5958	69 73	6988 9235	2750 4326	39 47	395 788	6	3843 4121	55 45
C.C 1 Statica+(EX+ λ *EY) 1 Statica+(λ *EX+EY) 2 Statica+(EX+ λ *EY)	FX(Tot) 10664 8210 10664 8210	FX(Pil.) 3109 2119 3109 2119	(%) 29 26 29 26	FX(Setti) 146 133 146	1 2 1	7410 5958 7410	69 73 69	6988 9235 6988	2750 4326 2750	39 47 39	395 788 395	6 9 6	3843 4121 3843	55 45 55
C.C 1 Statica+(EX+ λ *EY) 1 Statica+(λ *EX+EY) 2 Statica+(EX+ λ *EY) 2 Statica+(λ *EX+EY)	FX(Tot) 10664 8210 10664 8210	FX(Pil.) 3109 2119 3109 2119	(%) 29 26 29 26	FX(Setti) 146 133 146 133	1 2 1 2	7410 5958 7410	69 73 69	6988 9235 6988 9235	2750 4326 2750	39 47 39 47	395 788 395	6 9 6 9	3843 4121 3843	55 45 55
C.C 1 Statica+(EX+\hat{\lambda}*EY) 1 Statica+(\hat{\lambda}*EX+EY) 2 Statica+(EX+\hat{\lambda}*EY) 2 Statica+(\hat{\lambda}*EX+EY) *** Piano rigido alla	FX (Tot) 10664 8210 10664 8210 quota: 4.	FX(Pil.) 3109 2119 3109 2119	(%) 29 26 29 26	FX(Setti) 146 133 146 133	1 2 1 2	7410 5958 7410 5958	69 73 69 73	6988 9235 6988 9235	2750 4326 2750 4326	39 47 39 47	395 788 395 788	6 9 6 9	3843 4121 3843 4121	55 45 55 45
C.C 1 Statica+(EX+\hat{\lambda}*EY) 1 Statica+(\hat{\lambda}*EX+EY) 2 Statica+(EX+\hat{\lambda}*EY) 2 Statica+(\hat{\lambda}*EX+EY) *** Piano rigido alla C.C	FX (Tot) 10664 8210 10664 8210 quota: 4.	FX(Pil.) 3109 2119 3109 2119 2119 .090 Travi FX(Pil.)	(%) 29 26 29 26 live (%)	FX(Setti) 146 133 146 133 Bllo P01 FX(Setti)	1 2 1 2	7410 5958 7410 5958 FX(Pareti)	69 73 69 73	6988 9235 6988 9235 FY(Tot)	2750 4326 2750 4326 FY(Pil.)	39 47 39 47 (%)	395 788 395 788 FY(Setti)	6 9 6 9	3843 4121 3843 4121 FY(Pareti)	55 45 55 45 (%)
C.C 1 Statica+(EX+\hat{\lambda}*EY) 1 Statica+(\hat{\lambda}*EX+EY) 2 Statica+(EX+\hat{\lambda}*EY) 2 Statica+(\hat{\lambda}*EX+EY) *** Piano rigido alla C.C 1 Statica+(EX+\hat{\lambda}*EY)	PX(Tot) 10664 8210 10664 8210 quota: 4 FX(Tot) 13337	FX (Pil.) 3109 2119 3109 2119 .090 Travi FX (Pil.) 2371	(%) 29 26 29 26 live (%) 18	FX(Setti) 146 133 146 133 Pllo P01 FX(Setti) 74	1 2 1 2 (%)	7410 5958 7410 5958 FX(Pareti) 10893	69 73 69 73 (%) 82	6988 9235 6988 9235 FY(Tot) 8770	2750 4326 2750 4326 FY(Pil.) 2799	39 47 39 47 (%)	395 788 395 788 FY(Setti) 245	6 9 6 9 (%)	3843 4121 3843 4121 FY(Pareti) 5727	55 45 55 45 (%) 65
C.C 1 Statica+(EX+\(\lambda\)*EY) 1 Statica+(\(\lambda\)*EX+EY) 2 Statica+(EX+\(\lambda\)*EX+EY) *** Piano rigido alla C.C 1 Statica+(EX+\(\lambda\)*EY) 1 Statica+(\(\lambda\)*EX+EY)	FX(Tot) 10664 8210 10664 8210 quota: 4 FX(Tot) 13337 10624	FX(Pil.) 3109 2119 3109 2119 .090 Travi FX(Pil.) 2371 1869	(%) 29 26 29 26 live (%) 18 18	FX(Setti) 146 133 146 133 bllo P01 FX(Setti) 74 69	1 2 1 2 (%) 1 1	7410 5958 7410 5958 FX(Pareti) 10893 8685	69 73 69 73 (%) 82 82	6988 9235 6988 9235 FY(Tot) 8770 11660	2750 4326 2750 4326 FY(Pil.) 2799 4223	39 47 39 47 (%) 32 36	395 788 395 788 FY(Setti) 245 517	6 9 6 9 (%) 3 4	3843 4121 3843 4121 FY(Pareti) 5727 6920	55 45 55 45 (%) 65 59
C.C 1 Statica+(EX+\(\lambda\)*EY) 1 Statica+(\(\lambda\)*EX+EY) 2 Statica+(\(\lambda\)*EX+EY) *** Piano rigido alla C.C 1 Statica+(\(\lambda\)*EX+EY) 1 Statica+(\(\lambda\)*EX+EY) 2 Statica+(\(\lambda\)*EX+EY) 2 Statica+(\(\lambda\)*EX+EY)	FX(Tot) 10664 8210 10664 8210 quota: 4 FX(Tot) 13337 10624 13337	FX(Pil.) 3109 2119 3109 2119 .090 Travi FX(Pil.) 2371 1869 2371 1869	(%) 29 26 29 26 live (%) 18 18	FX(Setti) 146 133 146 133 8110 PO1 FX(Setti) 74 69 74	1 2 1 2 (%) 1 1 1	7410 5958 7410 5958 FX (Pareti) 10893 8685 10893	69 73 69 73 (%) 82 82 82	6988 9235 6988 9235 FY(Tot) 8770 11660 8770	2750 4326 2750 4326 FY(Pil.) 2799 4223 2799	39 47 39 47 (%) 32 36 32	395 788 395 788 FY(Setti) 245 517 245	6 9 6 9 (%) 3 4 3	3843 4121 3843 4121 FY(Pareti) 5727 6920 5727	55 45 55 45 (%) 65 59
C.C 1 Statica+ (EX+\hat{\lambda}*EY) 1 Statica+ (\hat{\lambda}*EX+\text{EY}) 2 Statica+ (EX+\hat{\lambda}*EY) 2 Statica+ (\hat{\lambda}*EX+\text{EY}) *** Piano rigido alla C.C 1 Statica+ (EX+\hat{\lambda}*EY) 1 Statica+ (\text{EX}+\hat{\lambda}*EY) 2 Statica+ (EX+\hat{\lambda}*EY) 2 Statica+ (\hat{\lambda}*EX+\text{EY})	FX(Tot) 10664 8210 10664 8210 quota: 4 FX(Tot) 13337 10624 13337	FX(Pil.) 3109 2119 3109 2119 .090 Travi FX(Pil.) 2371 1869 2371 1869	(%) 29 26 29 26 live (%) 18 18 18	FX(Setti) 146 133 146 133 8110 PO1 FX(Setti) 74 69 74	1 2 1 2 (%) 1 1	7410 5958 7410 5958 FX (Pareti) 10893 8685 10893	69 73 69 73 (%) 82 82 82	6988 9235 6988 9235 FY(Tot) 8770 11660 8770 11660	2750 4326 2750 4326 FY(Pil.) 2799 4223 2799	39 47 39 47 (%) 32 36 32 36	395 788 395 788 FY(Setti) 245 517 245	6 9 6 9 (%) 3 4 3	3843 4121 3843 4121 FY(Pareti) 5727 6920 5727	55 45 55 45 (%) 65 59
C.C 1 Statica+(EX+\(\hat{\text{N}}\)*EY) 2 Statica+(\(\hat{\text{EX}}\)*EY) 2 Statica+(\(\hat{\text{EX}}\)*EY) *** Piano rigido alla C.C 1 Statica+(\(\hat{\text{EX}}\)*EY) 2 Statica+(\(\hat{\text{EX}}\)*EY) 2 Statica+(\(\hat{\text{EX}}\)*EY) 2 Statica+(\(\hat{\text{EX}}\)*EY) 2 Statica+(\(\hat{\text{EX}}\)*EY) *** Piano rigido alla	FX(Tot) 10664 8210 10664 8210 quota: 4. FX(Tot) 13337 10624 13337 10624 quota: 0.	FX(Pil.) 3109 2119 3109 2119 3109 2119 .090 Travi FX(Pil.) 2371 1869 2371 1869	(%) 29 26 29 26 live (%) 18 18 18	FX(Setti) 146 133 146 133 146 133 3110 PO1 FX(Setti) 74 69 74 69	1 2 1 2 (%) 1 1	7410 5958 7410 5958 FX(Pareti) 10893 8685 10893 8685	69 73 69 73 (%) 82 82 82 82	6988 9235 6988 9235 FY(Tot) 8770 11660 8770 11660	2750 4326 2750 4326 FY(Pil.) 2799 4223 2799 4223	39 47 39 47 (%) 32 36 32 36	395 788 395 788 FY(Setti) 245 517 245 517	6 9 6 9 (%) 3 4 3	3843 4121 3843 4121 FY(Pareti) 5727 6920 5727 6920	55 45 55 45 (%) 65 59 65
C.C 1 Statica+(EX+\(\lambda\)*EY) 2 Statica+(EX+\(\lambda\)*EY) 2 Statica+(EX+\(\lambda\)*EY) *** Piano rigido alla C.C 1 Statica+(EX+\(\lambda\)*EX+EY) 2 Statica+(EX+\(\lambda\)*EX+EY) 2 Statica+(EX+\(\lambda\)*EX+EY) 2 Statica+(\(\lambda\)*EX+EY) *** Piano rigido alla C.C	FX(Tot) 10664 8210 10664 8210 quota: 4 FX(Tot) 13337 10624 13337 10624 quota: 0 FX(Tot)	FX(Pil.) 3109 2119 3109 2119 2119 3109 EX(Pil.) 2371 1869 2371 1869 FX(Pil.)	(%) 29 26 29 26 live (%) 18 18 18	FX(Setti) 146 133 146 133 146 133 140 701 FX(Setti) 74 69 74 69 FX(Setti)	1 2 1 2 (%) 1 1 1	7410 5958 7410 5958 FX(Pareti) 10893 8685 10893 8685 FX(Pareti) 10469	69 73 69 73 (%) 82 82 82 82 (%)	6988 9235 6988 9235 FY(Tot) 8770 11660 8770 11660	2750 4326 2750 4326 FY(Pil.) 2799 4223 2799 4223	39 47 39 47 (%) 32 36 32 36	395 788 395 788 FY(Setti) 245 517 245 517	6 9 6 9 (%) 3 4 3 4	3843 4121 3843 4121 FY(Pareti) 5727 6920 5727 6920 FY(Pareti)	55 45 55 45 (%) 65 59 65 59
C.C 1 Statica+ (EX+\hat{\lambda}*\text{EY}) 1 Statica+ (\hat{\lambda}*\text{EY}+\text{EY}) 2 Statica+ (EX+\hat{\lambda}*\text{EY}) *** Piano rigido alla C.C 1 Statica+ (EX+\hat{\lambda}*\text{EY}) 2 Statica+ (\hat{\lambda}*\text{EX}+\text{EY}) 2 Statica+ (EX+\hat{\lambda}*\text{EY}) 2 Statica+ (\hat{\lambda}*\text{EX}+\text{EY}) *** Piano rigido alla C.C 1 Statica+ (EX+\hat{\lambda}*\text{EY})	FX(Tot) 10664 8210 10664 8210 quota: 4 FX(Tot) 13337 10624 13337 10624 quota: 0 FX(Tot) 14411	FX(Pil.) 3109 2119 3109 2119 3109 2119 .090 Travi FX(Pil.) 2371 1869 2371 1869 .000 FX(Pil.) 3771	(%) 29 26 29 26 live (%) 18 18 18 18 (%)	FX(Setti) 146 133 146 133 146 133 140 PO1 FX(Setti) 74 69 74 69 FX(Setti) 171	1 2 1 2 (%) 1 1 1 (%)	7410 5958 7410 5958 FX(Pareti) 10893 8685 10893 8685 FX(Pareti) 10469 7349	69 73 69 73 (%) 82 82 82 82 (%) 73	6988 9235 6988 9235 FY(Tot) 8770 11660 8770 11660 FY(Tot) 7897	2750 4326 2750 4326 FY(Pil.) 2799 4223 2799 4223 FY(Pil.) 3231	39 47 39 47 (%) 32 36 32 36 (%) 41	395 788 395 788 FY(Setti) 245 517 245 517 FY(Setti) 98	6 9 6 9 (%) 3 4 4 (%) 1	3843 4121 3843 4121 FY(Pareti) 5727 6920 5727 6920 FY(Pareti) 4568	55 45 55 45 (%) 65 59 65 59 (%) 58

A.3 - 18.9 Verifica elementi in c.a.

Di seguito si riportano i risultati in forma grafica in cui con colore **VERDE** sono indicati gli elementi con verifica positiva, mentre con colore **ROSSO** sono indicati gli elementi non verificati.

I relativi indici di resistenza sono riportati nei grafici con scala cromatica. Valori ≤ 1.00 indicano l'elemento verificato.

Figura 3 - 18.14: Rappresentazione indici di resistenza (in colore verde gli elementi con verifica positiva)

A.3 - 18.10 Verifica elementi acciaio: telaio supporto impianti copertura

Di seguito si riportano i risultati in forma grafica in cui con colore **VERDE** sono indicati gli elementi con verifica positiva, mentre con colore **ROSSO** sono indicati gli elementi non verificati.

I relativi indici di resistenza sono riportati nei grafici con scala cromatica.

Valori ≤ 1.00 indicano l'elemento verificato.

Figura 3 - 18.15: Diagramma Inviluppo combinazioni SLU-SLV: sfruttamento acciaio telaio supporto impianti copertura

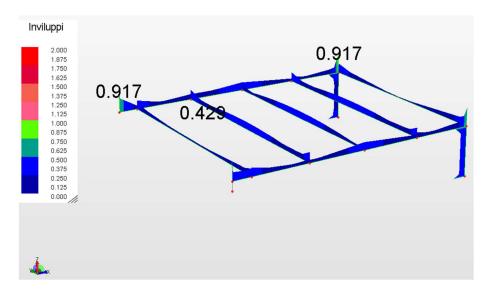
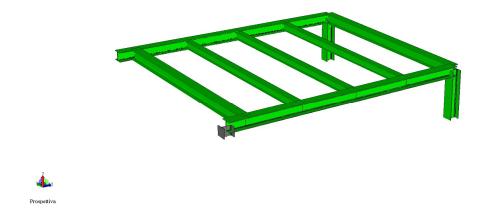



Figura 3 - 18.16: Diagramma verifica elementi acciaio (in colore verde gli elementi con verifica positiva)

A.3 - 18.10.1. Verifica nodi

Colonna-Fondazione Colonna: Gruppo = 13 Elemento = 15 Nodo = 144 HEA 220 S 275 (Fe 430) Banca n. 0: Banche generali AMV [Verifica] Banca n Assi locali piastra N = -36.95 kN Ty = 72.63 kN Tz = 29.36 kNN = -36.95 KN Ty = 72.63 kN My = 15.69 kN*m Tz = 29.36 kN Mz = -40.49 kN*m Per le sollecitazioni di ogni c.c. riferirsi ai risultati dell'analisi strutturale. [Verifica piastra di base] (S 275 (Fe 430), Rck 370) $400\times400\times20$ Tipologia n. 3 A = 320 B = 320 (mm) [Verifica cls]
Verifica cls:

I.R. = 0.36 (c.c. Sigma id = 85.4 N/mm² I.R. = 0.33 (c.c. 1E) Verifica plastra:

[Verifica tirafondo] (S 355 (Fe 510))

Numero 8 tirafondi: Diam. tirafondo = 20 (mm)

Rosetta: Diam. = 64 Spessore = 9 (mm)

Massime forze trasmesse al singolo tirafondo e relative resistenze:

Fvb, Sd = 5.17 kN Ftb, Sd = 36.79 kN

I.R. = 0. I.R. = 0.43 (c.c. 1E) [Verifica nervature] Altezza di gola1: 8 (mm)
Altezza di gola2: 5 (mm)
Altezza di gola3: 8 (mm)
Tens par. = 47.8 N/mm² Lunghezza2: 152 (mm)
Lunghezza3: 89 (mm)
Sigma perp. = 69.2 N/mm²
I.R. = 0.42
[Verifi-[Werifica saldatura nervature superiori]
Alt. gola = 8 (mm) Tens par. = 20.0 N/mm²
[Resistenza del nodo] Tens perp. = 53.5 N/mm^2 I.R. = 0.27Modalità di collasso: nessuna, situazione più gravosa [tirafondo] Colonna-Fondazione Elemento = 14 Colonna: Gruppo = 13 Nodo = 135 HEA 220 S 275 (Fe 430) [Verifica] Banca n. 0: Banche generali AMV Assi locali piastra N = -46.62 kNTy = 61.86 kNMy = -16.19 kN*m Mz = -35.67 kN*mTz = -30.31 kNPer le sollecitazioni di ogni c.c. riferirsi ai risultati dell'analisi strutturale.

[Verifica piastra di base] (S 275 (Fe 430), Rck 370)

400x400x20 Tipologia n. 3 A = 320 B = 320 (mm)

[Verifica cls] Verifica cls:

Verifica piastra:

Sigma id = 73.6 N/mm²

[Verifica tirafondo] (S 355 (Fe 510))

Numero 8 tirafondi: Diam. tirafondo = 20 (mm)

Rosetta: Diam. = 60 Spessore = 9 (mm)

Massime forze trasmesse al singolo tirafondo e relative resistenze:

Fvb, Sd = 1.85 kN Ftb, Sd = 31.71 kN

Fvb, Rd = 57.68 kN Ft, Rd = 86.52 kN I.R. = 0.

[Verifica nervature] I.R. = 0.28 (c.c. 1E) I.R. = 0.37 (c.c. 1E) [Verifica nervature] Lunghezza3: 89 (mm) Sigma perp. = 67.6 N/mm² I.R. = 0.37 [Werifica saldatura nervature superiori]
Alt. gola = 8 (mm) Tens par. = 17.5 N/mm²
[Resistenza del nodo] Tens perp. = 47.0 N/mm^2 I.R. = 0.24Modalità di collasso: nessuna, situazione più gravosa [saldatura colonna-piastra] Trave-Trave flangiata Diam. bulloni M16 Incremento foro: 2.0 (mm) [Resistenza zona a trazione] (Classe 8.8) [Seconda fila di bulloni] F,Rd = 148.7 kN (resistenza flangia di estremità) F,t2,Rd,ult = 148.7 kN (resistenza efficace seconda fila) [Momento resistente]
Mj,Rd = 17.3 kN*m [Rigidezza rotazionale] (calcolata per N trascurabile) S, j = 9236.0 kN*m/rad (rigidezza del giunto)

[Resistenza assiale profilo] (trascurabile) Npl,Rd = 1016.2 kN |N| <=
[Verifica a presso-tensoflessione del giunto] $|N| \le 0.05 \text{ Npl,Rd}$ I.R. = 0.00[Verifica a taglio del nodo]

F,t,Rd = 90.4 kN (resistenza dei bulloni a taglio)
I.R. = 0.07

[Verifica di rifollamento]

```
F,b,Rd = 114.7 kN (respectively)
I.R. = 0.04
[Verifica saldatura profilo]
Saldatura a cordone d'angolo (doppia sull'ala): verificata
Lunghezza1: 160 (mm) Altezza di gola1: 6 (mm)
Lunghezza2: 104 (mm) Altezza di gola2: 4 (mm)
Lunghezza3: 62 (mm) Altezza di gola3: 6 (mm)

o'mma perp. = 0.3 N/mm² Tens par. = 20.6 N/mm²
 F,b,Rd = 114.7 kN (resistenza a rifollamento)
 Trave-Trave flangiata
[Seconda fila di bulloni]
F,Rd = 148.7 kN (resistenza flangia di estremità)
F,t2,Rd,ult = 148.7 kN (resistenza efficace seconda fila)
  [Momento resistente]
[Momento resiscence, Mj,Rd = 17.3 kN*m [Rigidezza rotazionale] (calcolata per N trascurabile) S,j = 9236.0 kN*m/rad (rigidezza del giunto) [Resistenza assiale profilo] | N| <= 0.05 Npl,Rd
  Npl,Rd = 1016.2 kN
                                                                                                                            (trascurabile)
 [Verifica a presso-tensoflessione del giunto]
I.R. = 0.00
 [Verifica a taglio del nodo]

F,v,Rd = 60.3 kN (resistenza dei bulloni a taglio)

F,t,Rd = 90.4 kN (resistenza dei bulloni a trazione)
  I.R. = 0.07
  [Verifica di rifollamento]
 F,b,Rd = 114.7 kN (resistenza a rifollamento) I.R. = 0.04
  [Verifica saldatura profilo]
 Neminoa saldatura profiloj
Saldatura a cordone d'angolo (doppia sull'ala): verificata
Lunghezzal: 160 (mm) Altezza di golal: 6 (mm)
Lunghezza2: 104 (mm) Altezza di gola2: 4 (mm)
Lunghezza3: 62 (mm) Altezza di gola3: 6 (mm)
Sigma perp. = 0.3 N/mm² Tens par. = 20.6 N/mm²
I.R. = 0.15
```

A.3 - 18.11 Valutazione spostamenti interpiano allo SLD

Nel caso delle costruzioni civili e industriali, qualora la temporanea inagibilità sia dovuta a spostamenti di interpiano eccessivi, questa condizione si può ritenere soddisfatta quando gli spostamenti di interpiano ottenuti dall'analisi in presenza dell'azione sismica di progetto corrispondente allo SL e alla C_U considerati siano inferiori ai limiti indicati nel seguito.

Per le costruzioni ricadenti in classe d'uso I e II ci si riferisce allo SLD:

 per tamponamenti progettati in modo da non subire danni a seguito di spostamenti di interpiano drp , per effetto della loro deformabilità intrinseca ovvero dei collegamenti alla struttura:

SLD: dr < 0.01 hSLO: dr < 0.0067 h

dove:

- dr è lo spostamento interpiano, ovvero la differenza tra gli spostamenti al solaio superiore ed inferiore,
- h è l'altezza del piano.

NORMATIVA

Vita nominale costruzione 50 anni Classe d'uso costruzione Vita di riferimento 50 anni Localita' Napoli - Via Isidoro Fuortes 129 Longitudine (WGS84) 14.3281 40.8514 Latitudine (WGS84) Categoria del suolo В Coefficiente topografico 1 Coefficiente di smorzamento 5% Eccentricita' accidentale 10% Numero di frequenze 15 Periodo proprio T1 in direzione X 0.555 Periodo proprio T1 in direzione Y 0.582 Comportamento strutturale NON Dissipativo

PARAMETRI SISMICI

	TR	ag/g	FO	TC*	CC	Ss	Pga (ag*S) (m/s^2)
SLO	30	0.0457	2.3370	0.28	1.42	1.20	0.538
SLD	50	0.0604	2.3350	0.31	1.39	1.20	0.711
SLV	475	0.1691	2.3780	0.34	1.36	1.20	1.991
SLE	475	0.1691	2.3780	0.34	1.36	1.20	1.991
SLC	975	0.2144	2.4500	0.34	1.36	1.19	2.503

STATO LIMITE ULTIMO

Fattore di comportamento q per sisma orizzontale qor=1.07

STATO LIMITE DI DANNO

Fattore di comportamento q per sisma orizzontale qor=1 Coeff.moltiplicativo sisma 1.000

PARAMETRI SISMICI

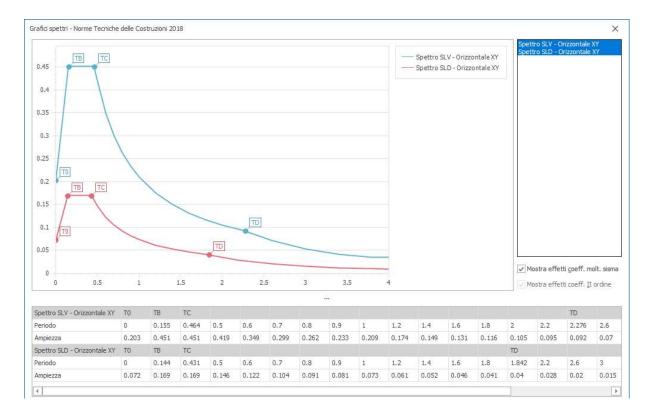
Angolo del sisma nel piano orizzontale

0

Sisma verticale

Combinazione dei modi

CQC NTC - Eurocodice 8 Combinazione componenti azioni sismiche


λ

0.3

μ

0.3

Assente

MASSIMI SPOSTAMENTI RELATIVI DI PIANO (SPOSTAMENTI DI INTERPIANO) Spostamento interpiano <= 0.01 h

Nome archivio di lavoro : edificio 1C Intestazione del lavoro : Edificio E1-C

GRUPPO: 1 Pilastri livello P00

N pil altezza h q*eta comb 1 +4.090e+00 +4.720e-03 +1.154e-03 D2

GRUPPO: 2 Pilastri livello P01

N pil altezza h q*eta q*eta/h comb 4 +4.340e+00 +8.561e-03 +1.973e-03

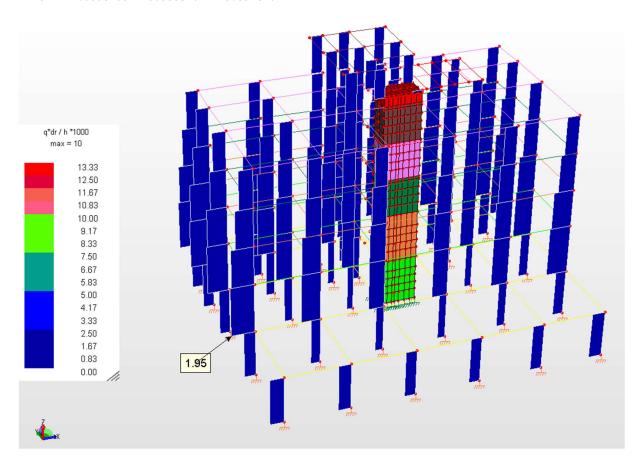
GRUPPO: 3 Pilastri livello P02

N pil altezza h q*eta q*eta/h 4 +3.350e+00 +6.170e-03 +1.842e-03 comb D2

GRUPPO: 4 Pilastri livello P03

N pil altezza h q*eta q*eta/h comb 5 +3.350e+00 +4.936e-03 +1.473e-03

GRUPPO: 5 Pilastri livello P04


N pil altezza h q*eta q*eta/h 5 +3.350e+00 +3.814e-03 +1.139e-03 q*eta/h comb D1

GRUPPO: 6 Pilastri livello P05

q*eta/h N pil altezza h q*eta comb 7 +3.350e+00 +3.232e-03 +9.648e-04 D2

GRUPPO: 13 grigliato copertura

N pil altezza h q*eta q*eta/h 15 +1.055e+00 +8.858e-04 +8.397e-04 q*eta/h comb D1

A.3 - 19. Verifica copertura spazio polifunzionale

Nei successivi paragrafi sonoriportati i principali risultati della analisi in forma grafica.

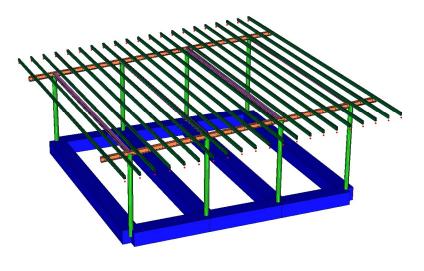


Figura 3 - 19.1: - modello fem copertura spazio polifunzionale - vista S-O

A.3 - 19.1 Dati di input e risultati dell'elaborazione per lo SLV

STAMPA DEI DATI DI PROGETTO

INTESTAZIONE E DATI CARATTERISTICI DELLA STRUTTURA

Nome dell'archivio di lavoro
Intestazione del lavoro
Tipo di struttura
Tipo di analisi
Tettoia teatro
Nello Spazio
Statica e Dinamica

Tipo di soluzione Lineare
Unita' di misura delle forze kN
Unita' di misura delle lunghezze m

Normativa NTC-2018

Normativa

Vita nominale costruzione50 anniClasse d'uso costruzioneIIVita di riferimento50 anni

Localita' Napoli - Via Isidoro Fuortes 129

Longitudine (WGS84)13.2307Latitudine (WGS84)46.0649Categoria del suoloBCoefficiente topografico1Coefficiente di smorzamento5%Eccentricita' accidentale0%Numero di frequenze10

Comportamento strutturale NON Dissipativo

PARAMETRI SISMICI

	TR	ag/g	FO	TC*	CC	Ss	Pga (ag*S) (m/s^2)
SLO	30	0.0563	2.4700	0.24	1.46	1.20	0.663
SLD	50	0.0735	2.4740	0.26	1.44	1.20	0.865
SLV	475	0.2061	2.4480	0.33	1.37	1.20	2.423
SLE	475	0.2061	2.4480	0.33	1.37	1.20	2.423
SLC	975	0.2736	2 4860	0.35	1.36	1 13	3 027

Stato limite ultimo

Fattore di comportamento q per sisma orizzontale qor=1

STATO LIMITE DI DANNO

Fattore di comportamento q per sisma orizzontale qor=1 Coeff.moltiplicativo sisma 1.000

Parametri sismici

Angolo del sisma nel piano orizzontale 0

Sisma verticale Assente
Combinazione dei modi CQC

Combinazione componenti azioni sismiche NTC - Eurocodice 8

 $\begin{array}{ccc} \lambda & & & 0.3 \\ \mu & & & & 0.3 \end{array}$

A.3 - 19.2 Combinazioni di carico

COMBINAZIONI DI CARICO

Normativa: NORME TECNICHE PER LE COSTRUZIONI 2018 Italia

Combin Num.	azioni per le verifiche a Descrizione	llo stato limite ultimo Parametri	Tipo azione/categoria	Condizione	Moltiplicatore
1	SLV_01	Azione sismica: Presente	Permanente: Peso Proprio	Condizione peso proprio	1.000
			Permanente: Permanente portato	Condizione 1	1.000
2	SLU_01:	Azione sismica: Sisma assente	Permanente: Peso Proprio	Condizione peso proprio	1.300
	perm+neve+vento		Permanente: Permanente portato	Condizione 1	1.500
			Variabile: Neve	Condizione 2	1.500
			Variabile: Vento	Condizione 4	0.900
3	= :	Azione sismica: Sisma assente	Permanente: Peso Proprio	Condizione peso proprio	1.300
	е		Permanente: Permanente portato	Condizione 1	1.300
			Variabile: Domestici e residenziali	Condizione 3	1.500
			Variabile: Neve	Condizione 2	0.750
4	SLU_03: perm+vento	Azione sismica: Sisma assente	Permanente: Peso Proprio	Condizione peso proprio	1.000
	depress		Permanente: Permanente portato	Condizione 1	1.000
			Variabile: Vento	Condizione 5	1.500
Num.		llo stato limite d'esercizio			
ivaiii.	Descrizione	Parametri	Tipo azione/categoria	Condizione	Moltiplicatore
5	Descrizione SLE_01:	Parametri Tipologia: Rara	Tipo azione/categoria Permanente: Peso Proprio	Condizione Condizione peso proprio	Moltiplicatore
					•
	SLE_01:		Permanente: Peso Proprio	Condizione peso proprio	1.000
	SLE_01:		Permanente: Peso Proprio Permanente: Permanente portato	Condizione peso proprio Condizione 1	1.000
	SLE_01: perm+neve+vento SLE_02:perm+manut+nev	Tipologia: Rara	Permanente: Peso Proprio Permanente: Permanente portato Variabile: Neve	Condizione peso proprio Condizione 1 Condizione 2	1.000 1.000 1.000
5	SLE_01: perm+neve+vento	Tipologia: Rara	Permanente: Peso Proprio Permanente: Permanente portato Variabile: Neve Variabile: Vento	Condizione peso proprio Condizione 1 Condizione 2 Condizione 4	1.000 1.000 1.000 0.600
5	SLE_01: perm+neve+vento SLE_02:perm+manut+nev	Tipologia: Rara	Permanente: Peso Proprio Permanente: Permanente portato Variabile: Neve Variabile: Vento Permanente: Peso Proprio	Condizione peso proprio Condizione 1 Condizione 2 Condizione 4 Condizione peso proprio	1.000 1.000 1.000 0.600
5	SLE_01: perm+neve+vento SLE_02:perm+manut+nev	Tipologia: Rara	Permanente: Peso Proprio Permanente: Permanente portato Variabile: Neve Variabile: Vento Permanente: Peso Proprio Permanente: Permanente portato	Condizione peso proprio Condizione 1 Condizione 2 Condizione 4 Condizione peso proprio Condizione 1	1.000 1.000 1.000 0.600 1.000
5	SLE_01: perm+neve+vento SLE_02:perm+manut+nev e SLE_03: perm+vento	Tipologia: Rara	Permanente: Peso Proprio Permanente: Permanente portato Variabile: Neve Variabile: Vento Permanente: Peso Proprio Permanente: Permanente portato Variabile: Domestici e residenziali	Condizione peso proprio Condizione 1 Condizione 2 Condizione 4 Condizione peso proprio Condizione 1 Condizione 3	1.000 1.000 1.000 0.600 1.000 1.000
5	SLE_01: perm+neve+vento SLE_02:perm+manut+nev e	Tipologia: Rara Tipologia: Rara	Permanente: Peso Proprio Permanente: Permanente portato Variabile: Neve Variabile: Vento Permanente: Peso Proprio Permanente: Permanente portato Variabile: Domestici e residenziali Variabile: Neve	Condizione peso proprio Condizione 1 Condizione 2 Condizione 4 Condizione peso proprio Condizione 1 Condizione 3 Condizione 2	1.000 1.000 1.000 0.600 1.000 1.000 1.000 0.500
5	SLE_01: perm+neve+vento SLE_02:perm+manut+nev e SLE_03: perm+vento	Tipologia: Rara Tipologia: Rara	Permanente: Peso Proprio Permanente: Permanente portato Variabile: Neve Variabile: Vento Permanente: Peso Proprio Permanente: Permanente portato Variabile: Domestici e residenziali Variabile: Neve Permanente: Peso Proprio	Condizione peso proprio Condizione 1 Condizione 2 Condizione 4 Condizione peso proprio Condizione 1 Condizione 3 Condizione 2 Condizione peso proprio	1.000 1.000 1.000 0.600 1.000 1.000 1.000 0.500
5	SLE_01: perm+neve+vento SLE_02:perm+manut+nev e SLE_03: perm+vento	Tipologia: Rara Tipologia: Rara Tipologia: Rara	Permanente: Peso Proprio Permanente: Permanente portato Variabile: Neve Variabile: Vento Permanente: Peso Proprio Permanente: Permanente portato Variabile: Domestici e residenziali Variabile: Neve Permanente: Peso Proprio Permanente: Permanente portato	Condizione peso proprio Condizione 1 Condizione 2 Condizione 4 Condizione peso proprio Condizione 1 Condizione 3 Condizione 2 Condizione peso proprio Condizione 1	1.000 1.000 1.000 0.600 1.000 1.000 1.000 0.500 1.000
5 6 7	SLE_01: perm+neve+vento SLE_02:perm+manut+nev e SLE_03: perm+vento depress	Tipologia: Rara Tipologia: Rara Tipologia: Rara	Permanente: Peso Proprio Permanente: Permanente portato Variabile: Neve Variabile: Vento Permanente: Peso Proprio Permanente: Permanente portato Variabile: Domestici e residenziali Variabile: Neve Permanente: Peso Proprio Permanente: Peso Proprio Permanente: Peso Proprio Variabile: Vento	Condizione peso proprio Condizione 1 Condizione 2 Condizione 4 Condizione peso proprio Condizione 1 Condizione 3 Condizione 2 Condizione peso proprio Condizione 5 Condizione 1 Condizione 5	1.000 1.000 1.000 0.600 1.000 1.000 1.000 0.500 1.000 1.000

Permanente: Permanente portato

Condizione 1

1.000

A.3 - 19.3 Diagrammi delle sollecitazioni

Diagramma inviluppo combinazioni SLU-SLV - momento flettente Mz Figura 3 - 19.2:

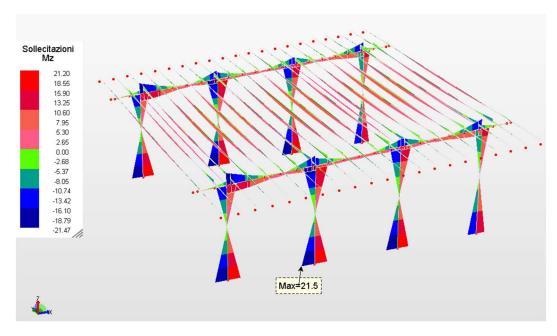
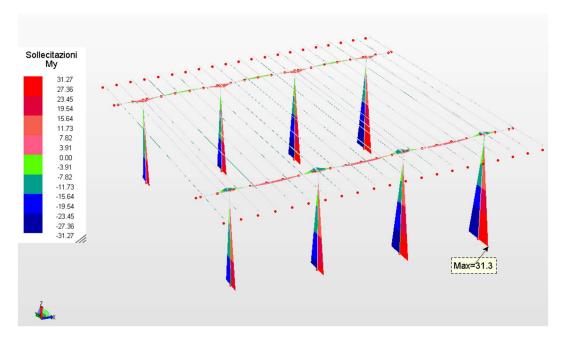
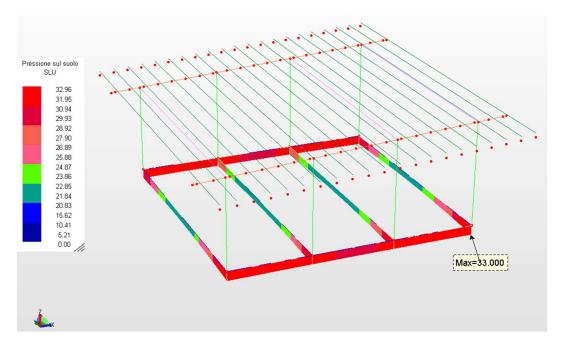



Diagramma inviluppo combinazioni SLU-SLV - momento flettente My Figura 3 - 19.3:

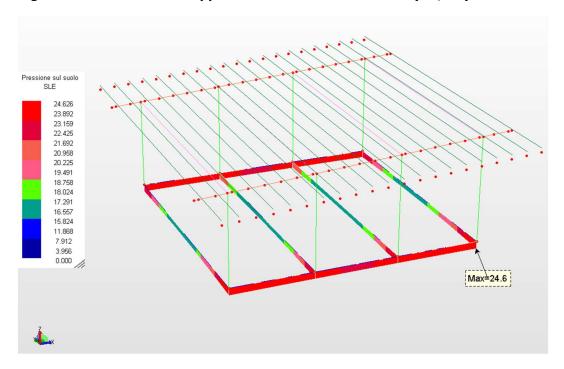
A.3 - 19.1 Modi propri di vibrazione

TABELLA MASSE ECCITATE

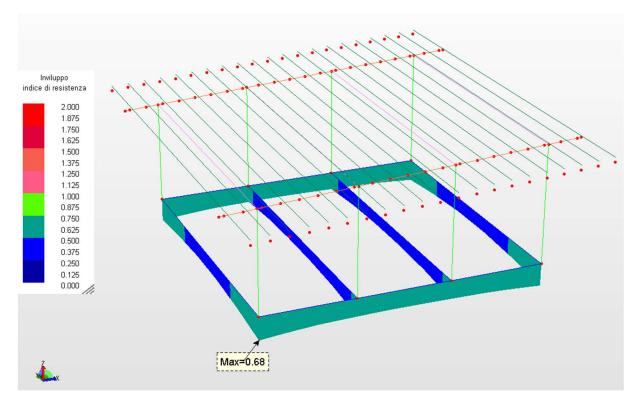
Periodo principale	T1	Mas	ssa	Massa %	Modo	Note	
Direzione X	+3.23e-01	+1.43	e+01	98	3		
Direzione Y	+5.56e-01	+1.32	e+01	90	1		
Direzione Z	+2.20e-01	+9.23	se-01	6	9		
Periodo	T2	Mas	ssa	Massa %	Modo	Note	
Direzione X	+0.00e+00	+0.00	e+00	0	0		
Direzione Y	+4.34e-01	+1.29	e+00	9	2		
Direzione Z	+0.00e+00	+0.00	e+00	0	0		
ROSPETTO RIA	SSUNTIVO MASSE	ECCITATE					
Analisi	Direz.X	%	Direz.Y	%	Direz. Z	%	
-	+1.43e+01	98	+1.45e+01	100	+9.57e-01	7	
PEOLIENZE DPO	OPRIE DI OSCILLA	ZIONE					
Numero		Pulsazione		Frequenza		Periodo	Precisi
1		1.130e+01		1.799e+00		5.558e-01	0.000e
2		1.448e+01		2.304e+00		4.341e-01	0.000e
3		1.947e+01		3.099e+00		3.227e-01	0.000e
4		2.032e+01		3.234e+00		3.092e-01	4.068e
5		2.061e+01		3.281e+00		3.048e-01	2.329e
6		2.665e+01		4.241e+00		2.358e-01	2.053e
7		2.742e+01		4.363e+00		2.292e-01	8.885e
8		2.743e+01		4.365e+00		2.291e-01	3.135e
9		2.854e+01		4.543e+00		2.201e-01	3.259e
10		3.244e+01		5.163e+00		1.937e-01	1.137e
	PARTECIPAZIONE odo	INIODALE	Direz.X		Direz.Y		
	1		4.519e-10		3.626e+00		
	2		-2.524e-09		1.134e+00		
	3		-3.776e+00		1.327e-10		
	4		9.660e-09		3.878e-02		
	5		5.385e-09		2.415e-01		
	6		1.315e-02		-6.684e-12		
	7		-6.773e-02		-8.915e-11		
	8		1.195e-09		5.869e-02		
	9		-4.157e-02		1.103e-12		
	10		-8.597e-11		-1.442e-02		
IASSA ECCITAT							
er quota Z magg		0/	Diva- V	0/	Di 7	0/	Deter 7
Modo	Direz.X	%	Direz.Y	%	Direz.Z	%	Rotaz.Z
/lodo: 1 Progressiva	+2.04e-19 +2.04e-19	0 0	+1.32e+01 +1.32e+01	90 90	+4.95e-21 +4.95e-21	0	+1.67e-35 +1.67e-35
•	+6.37e-18	0	+1.29e+00	90	+1.01e-21	0	+1.15e-37
	+6.58e-18	0	+1.44e+01	99	+5.97e-21	0	+1.68e-35
	+1.43e+01	98	+1.76e-20	0	+7.50e-05	0	+1.30e-42
rogressiva		98	+1.44e+01	99	+7.50e-05	0	+1.68e-35
rogressiva lodo: 3	+1 43e+01	50		0	+5.27e-23	0	+1.47e-38
rogressiva lodo: 3 rogressiva	+1.43e+01 +9.33e-17	0		0	+7.50e-05	0	+1.69e-35
rogressiva lodo: 3 rogressiva lodo: 4	+9.33e-17	0	+1.50e-03	99			
Progressiva Modo: 3 Progressiva Modo: 4 Progressiva	+9.33e-17 +1.43e+01	98	+1.44e+01	99 0			
Progressiva Modo: 3 Progressiva Modo: 4 Progressiva Modo: 5	+9.33e-17 +1.43e+01 +2.90e-17	98 0	+1.44e+01 +5.83e-02	0	+6.79e-21	0	+1.14e-36
Progressiva Modo: 3 Progressiva Modo: 4 Progressiva Modo: 5 Progressiva	+9.33e-17 +1.43e+01 +2.90e-17 +1.43e+01	98 0 98	+1.44e+01 +5.83e-02 +1.45e+01	0 100	+6.79e-21 +7.50e-05	0 0	+1.14e-36 +1.80e-35
Modo: 2 Progressiva Modo: 3 Progressiva Modo: 4 Progressiva Modo: 5 Progressiva Modo: 6 Progressiva	+9.33e-17 +1.43e+01 +2.90e-17	98 0	+1.44e+01 +5.83e-02	0	+6.79e-21	0	+1.14e-36


Modo	Direz.X	%	Direz.Y	%	Direz.Z	%	Rotaz.Z
Modo: 7	+4.59e-03	0	+7.95e-21	0	+6.51e-05	0	+1.16e-41
Progressiva	+1.43e+01	98	+1.45e+01	100	+3.39e-02	0	+1.80e-35
Modo: 8	+1.43e-18	0	+3.44e-03	0	+1.00e-20	0	+1.22e-37
Progressiva	+1.43e+01	98	+1.45e+01	100	+3.39e-02	0	+1.81e-35
Modo: 9	+1.73e-03	0	+1.22e-24	0	+9.23e-01	6	+1.82e-41
Progressiva	+1.43e+01	98	+1.45e+01	100	+9.57e-01	7	+1.81e-35
Modo: 10	+7.39e-21	0	+2.08e-04	0	+1.27e-17	0	+1.60e-38
Progressiva	+1.43e+01	98	+1.45e+01	100	+9.57e-01	7	+1.81e-35

MASSA TOTALE ECCITABILE


Direzione X	Direzione Y	Direzione Z	Rotazione Z
+1.45e+01	+1.45e+01	+1.45e+01	+1.03e-19

A.3 - 19.2 Pressioni in fondazione


Figura 3 - 19.4: Inviluppo Pressione al suolo allo SLU (kN/m²)

Inviluppo Pressione al suolo allo SLE (kN/m²) Figura 3 - 19.5:

Caratteristiche geotecniche del terreno:

Peso specifico terreno: Angolo di attrito: 13000 28.00 ${\rm N}/{\rm m}^3$ 0.000 N/mm² gradi Profondità di posa: cm 80.0 N/mm² Angolo di attrito terreno-fondazione 18.00 gradi Adesione terreno-fondazione: 0.000

Metodo di calcolo della capacità portante:

Criterio di: Meyerhof

Coefficienti sismici globali:

Coefficiente sismico [khix]: 0.497 Coefficiente sismico [khix]: 0.497 Coefficiente sismico [khix]: 0.069

Tipo fondazione: trave rovescia

Base: 60 [cm]

Descrizione: SLV 01 Combinazione: 1 azione sismica PRESENTE

Coefficienti parziali γM di sicurezza per i parametri geotecnici del terreno

Tangente angolo res. taglio: 1.00
Coesione efficace: 1.00
Resistenza non drenata: 1.00
Peso dell'unita' di volume: 1.00

Coefficienti parziali γR di sicurezza per le verifiche SLU

Capacita' portante: 2.30 Scorrimento: 1.10

14.70 Fattore Nc: 25.79 Fattore Nγ: Fattore Ng: Fatt. inclinazione del carico [iqX]: 0.50 Fatt. inclinazione del carico [icX]: 0.50 Fatt. inclinazione del carico [iqX]: 0.11Fatt. inclinazione del carico [iqY]: 0.50 Fatt. inclinazione del carico [icY]: 0.50 Fatt. inclinazione del carico [iqY]: 0.11[sq]: 1.00 Fattore di forma [sc]: 1.00 Fattore di forma [s γ]: 1.00 [dq]: 1.22 Fattore di profondita' [dc]: 1.44 Fattore di profondita' [d γ]: 1.22 Fattore di forma Fattore di profondita' [dq]: 1.22 Fattore di profondita' [dc]: 1.44 Fattore di profondita' [dγ]: 1.22 [eγk]: 0.94 Coefficiente correttivo [eγiX]: 0.12 Coefficiente correttivo [eγiY]: 0.12 Coefficiente correttivo

Verifica della capacità portante

QUlt (sisma in dir.X): 99.136 kN/m²
QUlt (sisma in dir.Y): 99.136 kN/m²
Max pressione suolo: 29.404 kN/m² Indice di resistenza: 0.68

Verifica a scorrimento

Carico orizzontale in dir.X agente sulla fondazione: Carico orizzontale in dir.Y agente sulla fondazione: Carico verticale agente sulla fondazione: Carico verticale totale (con peso proprio): 9.86 kN 142.59 513.84 kN kN 166.96 Forza resistente per attrito: Indice di resistenza: kN

Combinazione: 2 Descrizione: SLU_01: perm+neve+vento azione sismica ASSENTE

```
Coefficienti parziali \gamma_{M} di sicurezza per i parametri geotecnici del terreno
Tangente angolo res. taglio: 1.00
Coesione efficace:
Resistenza non drenata:
Peso dell'unita' di volume:
Coefficienti parziali VR di sicurezza per le verifiche SLU
Capacita' portante:
                              2.30
Scorrimento:
                              1.10
Fattore Nq:
                                     14.70 Fattore Nc:
                                                                                  25.79 Fattore N\gamma:
                                                                                                                 11.20
Fatt. inclinazione del carico [iqX]: 1.00 Fatt. inclinazione del carico [icX]: 1.00 Fatt. inclinazione del carico [iqX]: 1.00
Fatt. inclinazione del carico [iqY]: 1.00 Fatt. inclinazione del carico [icY]: 1.00 Fatt. inclinazione del carico [iqY]: 1.00
                                                                           [sc]: 1.00 Fattore di forma
[dc]: 1.44 Fattore di profondita'
Fattore di forma
                               [sq]: 1.00 Fattore di forma
                                                                                                                         [sy]: 1.00
Fattore di profondita'
                               [dq]: 1.22 Fattore di profondita'
                                                                                                                         [dv]: 1.22
Coefficiente correttivo
                              [eYk]: 0.00 Coefficiente correttivo
                                                                           [eYiX]: 0.00 Coefficiente correttivo
                                                                                                                       [eγiY]: 0.00
Indice di resistenza:
                          0.32
Combinazione: 3
                 Descrizione: SLU 02:perm+manut+neve
                                                            azione sismica ASSENTE
Coefficienti parziali YM di sicurezza per i parametri geotecnici del terreno
Tangente angolo res. taglio: 1.00
Coesione efficace: 1.00
Resistenza non drenata:
Peso dell'unita' di volume: 1.00
Coefficienti parziali \gammaR di sicurezza per le verifiche SLU
Capacita' portante: 2.30
Scorrimento: 1.10
Fattore Ng:
                                     14.70 Fattore Nc:
                                                                                  25.79 Fattore Nγ:
Fatt. inclinazione del carico [iqX]: 1.00 Fatt. inclinazione del carico [icX]: 1.00 Fatt. inclinazione del carico [iqX]: 1.00
Fatt. inclinazione del carico [iqY]: 1.00 Fatt. inclinazione del carico [icY]: 1.00 Fatt. inclinazione del carico [iqY]: 1.00
                              [dq]: 1.22 Fattore di forma [sc]: 1.00 Fattore di forma [sc]: 1.44 Fattore di forma
                        [sq]: 1.00 Fattore di forma
                                                                                                                [sγ]: 1.00
Fattore di forma
Fattore di profondita'
                                                                            [dc]: 1.44 Fattore di profondita'
                                                                                                                         [dy]: 1.22
                              [eqk]: 0.00 Coefficiente correttivo [eqiX]: 0.00 Coefficiente correttivo [eqiY]: 0.00
Coefficiente correttivo
Verifica della capacità portante
                        240.177
                                kN/m<sup>2</sup>
OUlt:
                        32.924 kN/m<sup>2</sup>
Indice di resistenza:
                          0.32
Combinazione: 4 Descrizione: SLU_03: perm+vento depress
Coefficienti parziali \gamma M di sicurezza per i parametri geotecnici del terreno Tangente angolo res. taglio: 1.00 Coesione efficace: 1.00
Resistenza non drenata:
Peso dell'unita' di volume: 1.00
Coefficienti parziali \gammaR di sicurezza per le verifiche SLU
Capacita' portante:
Scorrimento:
                              2.30
                              1 10
                                     14.70 Fattore Nc:
                                                                                  25.79 Fattore NV:
Fattore Ng:
                                                                                                                 11 20
Fatt. inclinazione del carico [iqX]: 1.00 Fatt. inclinazione del carico [icX]: 1.00 Fatt. inclinazione del carico [iqX]: 1.00
Fatt. inclinazione del carico [iqY]: 1.00 Fatt. inclinazione del carico [icY]: 1.00 Fatt. inclinazione del carico [iqY]: 1.00
                                                                     [sc]: 1.00 Fattore di forma
                                                                                                                  [s\gamma]: 1.00
                         [sq]: 1.00 Fattore di forma
Fattore di forma
                               [dq]: 1.22 Fattore di profondita'
Fattore di profondita'
                                                                            [dc]: 1.44 Fattore di profondita'
                                                                                                                         [dγ]: 1.22
Coefficiente correttivo
                              [eVk]: 0.00 Coefficiente correttivo
                                                                           [eViX]: 0.00 Coefficiente correttivo
                                                                                                                        [e7iY]: 0.00
Verifica della capacità portante
QUlt: 240.177 kN/m^2 Max pressione suolo: 12.335 kN/m^2
Indice di resistenza:
                          0.12
                 Descrizione: SLE_01: perm+neve+vento
Combinazione: 5
Coefficienti parziali YM di sicurezza per i parametri geotecnici del terreno
Tangente angolo res. taglio:
Coesione efficace:
                              1.00
Resistenza non drenata: 1.00
Peso dell'unita' di volume: 1.00
Coeff. sicurezza SLE:
                              3.0
Fattore Ng:
                                     14.70 Fattore Nc:
                                                                                  25.79 Fattore NY:
Fatt. inclinazione del carico [iqX]: 1.00 Fatt. inclinazione del carico [icX]: 1.00 Fatt. inclinazione del carico [iqX]: 1.00
Fatt. inclinazione del carico [iqY]: 1.00 Fatt. inclinazione del carico [icY]: 1.00 Fatt. inclinazione del carico [i\gammaY]:
rattore di forma [sq]: 1.00 Fattore di forma Fattore di profondita' [d\alpha]: 1.00 Fattore di forma
                               ratt. inclinazione [sc]: 1.00 Fattore di forma [dq]: 1.22 Fattore di profondita' [dc]: 1.44 Paris [eyk]: 0.00 Cooff' |
                                                                                                                    [s\gamma]: 1.00
                                                                                                                         [dγ]: 1.22
                                                                            [dc]: 1.44 Fattore di profondita'
                                                                           [eγiX]: 0.00 Coefficiente correttivo
Coefficiente correttivo
                              [eyk]: 0.00 Coefficiente correttivo
                                                                                                                        [eγiY]: 0.00
```

Verifica della capacità portante

QUlt: 240.177 kN/m² Max pressione suolo: 24.002 kN/m² Indice di resistenza: 0.30

Combinazione: 6 Descrizione: SLE 02:perm+manut+neve azione sismica ASSENTE

Coefficienti parziali γM di sicurezza per i parametri geotecnici del terreno

Tangente angolo res. taglio: 1.00 Coesione efficace: 1.00 Resistenza non drenata: Peso dell'unita' di volume: 1 00 Coeff. sicurezza SLE: 3.0

11.20 Fattore Nq: 14.70 Fattore Nc: **25.79** Fattore Nγ: Fatt. inclinazione del carico [iqX]: 1.00 Fatt. inclinazione del carico [icX]: 1.00 Fatt. inclinazione del carico [iγX]: 1.00

Fatt. inclinazione del carico [iqY]: 1.00 Fatt. inclinazione del carico [icY]: 1.00 Fatt. inclinazione del carico [iγY]: 1.00 [sq]: 1.00 Fattore di forma [sc]: 1.00 Fattore di forma [sy]: 1.00 [dq]: 1.22 Fattore di profondita' [dc]: 1.44 Fattore di profondita' [dy]: 1.22 Fattore di forma Fattore di profondita' Coefficiente correttivo [eγk]: 0.00 Coefficiente correttivo [e γ iX]: 0.00 Coefficiente correttivo [e γ iY]: 0.00

Indice di resistenza:

Combinazione: 7 Descrizione: SLE_03: perm+vento depress azione sismica ASSENTE

Coefficienti parziali YM di sicurezza per i parametri geotecnici del terreno

Tangente angolo res. taglio: 1.00 Coesione efficace: 1.00 Resistenza non drenata: Peso dell'unita' di volume: 1.00 Coeff. sicurezza SLE: 3.0

14.70 Fattore Nc: 25.79 Fattore Nγ: Fattore Ng: 11.20

Fatt. inclinazione del carico [iqX]: 1.00 Fatt. inclinazione del carico [icX]: 1.00 Fatt. inclinazione del carico [iγX]: 1.00 Fatt. inclinazione del carico [iqY]: 1.00 Fatt. inclinazione del carico [icY]: 1.00 Fatt. inclinazione del carico [iqY]: 1.00[sc]: 1.00 Fattore di forma
[dc]: 1.44 Fattore di profondita' [sγ]: 1.00 Fattore di forma [sq]: 1.00 Fattore di forma [dq]: 1.22 Fattore di profondita' Fattore di profondita' [dγ]: 1.22 Coefficiente correttivo [e γ k]: 0.00 Coefficiente correttivo [eγiX]: 0.00 Coefficiente correttivo [eγiY]: 0.00

Max pressione suolo: 0.18 Indice di resistenza:

A.3 - 19.3 Verifica elementi acciaio: copertura spazio polivalente

Di seguito si riportano i risultati in forma grafica in cui con colore **VERDE** sono indicati gli elementi con verifica positiva, mentre con colore **ROSSO** sono indicati gli elementi non verificati.

I relativi indici di resistenza sono riportati nei grafici con scala cromatica.

Valori ≤ 1.00 indicano l'elemento verificato.

Figura 3 - 19.7: Diagramma Inviluppo combinazioni SLU-SLV: sfruttamento acciaio copertura spazio polivalente

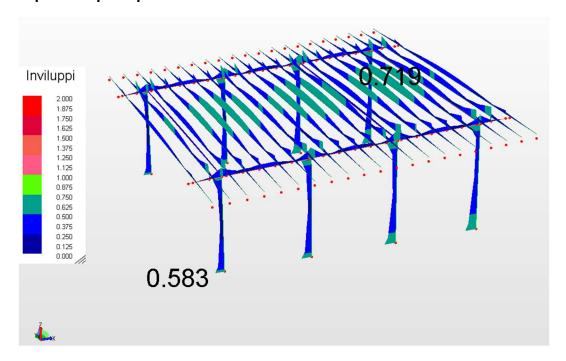
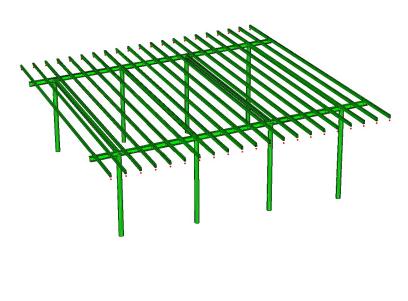



Figura 3 - 19.8: Diagramma verifica elementi acciaio (in colore verde gli elementi con verifica positiva)

A.3 - 19.3.1. Verifica nodi

Colonna-Fondazione

```
Gruppo = 1 Elemento = 1 Nodo = 1 Cc D=16.83 s=0.8 S 275 (Fe 430)
Colonna:
                       Banca n. 0: Banche generali AMV
 [Verifica]
Assi locali piastra
Assi locali piastra N = -35.97 \text{ kN} Ty = -12.05 \text{ kN My} = -20.87 \text{ kN*m} Tz = 7.29 \text{ kN} \quad Mz = 20.18 \text{ kN*m} Per le sollecitazioni di ogni c.c. riferirsi ai risultati dell'analisi strutturale.
[Verifica piastra di base] ($ 275 (Fe 430), Rck 370)
D=360 s=20 Tipologia n. 2 A = 50
[Verifica cls]
                                   I.R. = 0.40
Verifica cls:
Verifica piastra:
                                                            40 (c.c. 10)
Sigma id = 137.4 N/mm<sup>2</sup>
                                                                                                                                I.R. = 0.52
                                                                                                                                                          (c.c. 10)
Verifica piastra: Sigma id = 13. [Verifica tirafondo] (S 355 (Fe 510))
Numero 8 tirafondi: Diam. tirafondo = 16 (mm)
Rosetta: Diam. = 56 Spessore = 9 (mm)
Massime forze trasmesse al singolo tirafondo e relative resistenze:
Fvb, Sd = 0.91 kN
Fvb, Rd = 36.91 kN
                                          Ftb, Sd = 28.50 \text{ kN}
Ft, Rd = 55.37 \text{ kN}
                                                                                                             I.R. = 0.51 (c.c. 10)
 [Verifica nervature]
Numero 8 nervature superiori: h=150 sp=8 (mm)
Sigma = 53.2 N/mm² I

[Verifica saldatura profilo]
Saldatura a cordone d'angolo: verificata
Allezza di gola: 7 (mm)
Sigma perp. = 133.8 N/mm² Tens par. = 6.3 N/mm²
I.R. = 0.57
[Verifica saldatura nervature superiori]
Resistenza del nodo]
                                                                                   Tens perp. = 55.7 N/mm<sup>2</sup> I.R. = 0.39
Modalità di collasso: nessuna, situazione più gravosa [saldatura colonna-piastra]
Colonna-Fondazione
                        Gruppo = 1 Elemento = 3 Nodo = 7 Cc D=16.83 s=0.8 S 275 (Fe 430)
Colonna:
                      Banca n. 0: Banche generali AMV
[Verifica] Banca n. 0: Banche generali AMV Assi locali piastra N = -45.26 \text{ kN}  
Ty = 13.07 kN My = -24.70 kN*m  
Tz = 8.28 kN Mz = -21.47 kN*m  
Per le sollecitazioni di ogni c.c. riferirsi ai risultati dell'analisi strutturale. [Verifica piastra di base] (S 275 (Fe 430), Rck 370)  
D=360 s=20   Tipologia n. 2   A = 50  
[Verifica cls]
Verifica cls:
Verifica piastra:
                                   I.R. = 0.47
                                                            47 (c.c. 10)
Sigma id = 159.6 N/mm<sup>2</sup>
Verifica piastra: Sigma id = 159.6 N/mm²

[Verifica tirafondo] (S 355 (Fe 510))

Numero 8 tirafondi: Diam. tirafondo = 16 (mm)

Rosetta: Diam. = 60 Spessore = 10 (mm)

Massime forze trasmesse al singolo tirafondo e relative resistenze:

Fvb, Sd = 1.03 kN Ftb, Sd = 33.10 kN

Fvb, Rd = 36.91 kN Ft, Rd = 55.37 kN I.R.

[Verifica nervature]

Numero 8 pervature superioris balso 2 2.22
                                                                                                                                I.R. = 0.61
                                                                                                                                                          (c.c. 10)
                                                                                                        I.R. = 0.60 (c.c. 10)
Sigma = 59.0 N/mm<sup>2</sup>

[Verifica saldatura profilo]
Saldatura a cordone d'angolo: verificata
Altezza di gola: 7 (mm)
Sigma perp. = 157 7
Numero 8 nervature superiori: h=150 sp=8 (mm)
Sigma perp. = 157.6 N/mm<sup>2</sup> I.R. = 0.68
                                                    Tens par. = 6.8 N/mm<sup>2</sup>
[Verifica saldatura nervature superiori]
Alt. gola = 5 (mm) Tens par. = 48.3 N/mm<sup>2</sup> [Resistenza del nodo]
                                                                                   Tens perp. = 65.9 N/mm<sup>2</sup> I.R. = 0.46
Modalità di collasso: nessuna, situazione più gravosa [saldatura colonna-piastra]
Colonna-Fondazione
                        Colonna:
                     Banca n. 0: Banche generali AMV
N = -45.39 kN
Ty = -11.30 kN My = -29.18 kN*m
Tz = 9.32 kN Mz = 19.56 kN*m
TZ = 9.32 kN MZ = 19.56 kN*m

Per le sollecitazioni di ogni c.c. riferirsi ai risultati dell'analisi strutturale.

[Verifica piastra di base] (S 275 (Fe 430), Rck 370)

D=360 s=20 Tipologia n. 2 A = 50

[Verifica cls]
Verifica cls:

Verifica piastra:

Sigma id = 190.6 N/mm²

[Verifica tirafondo] (S 355 (Fe 510))

Numero 8 tirafondi: Diam. tirafondo = 16 (mm)

Rosetta: Diam. = 65 Spessore = 11 (mm)

Massime forze trasmesse al singolo tirafondo e relative resistenze:

Fvb, Sd = 1.16 kN Ftb, Sd = 39.54 kN

Fvb, Rd = 36.91 kN I.R.

[Verifica nervature]
                                                                                                                                I.R. = 0.73
                                                                                                                                                          (c.c. 10)
                                                                                                             I.R. = 0.71 (c.c. 10)
 [Verifica nervature]
Numero 8 nervature superiori: h=150 sp=8 (mm)
Sigma = 69.4 N/mm<sup>2</sup>
[Verifica saldatura profilo]
Lverifica saidatura profilo]
Saldatura a cordone d'angolo: verificata
Altezza di gola: 7 (mm)
Sigma perp. = 185.1 N/mm² Tens par. =
I.R. = 0.79
Tens par. =
                                                    Tens par. = 5.9 N/mm<sup>2</sup>
I.K. = 0.79
[Verifica saldatura nervature superiori]
Alt. gola = 5 (mm) Tens par. = 56.9 N/mm<sup>2</sup>
[Resistenza del nodo]
                                                                                   Tens perp. = 77.9 \text{ N/mm}^2 I.R. = 0.54
Modalità di collasso: nessuna, situazione più gravosa [saldatura colonna-piastra]
```

Colonna-Fondazione

```
Gruppo = 1 Elemento = 2 Nodo = 4 Cc D=16.83 s=0.8 S 275 (Fe 430)
                     Banca n. 0: Banche generali AMV
Assi locali piastra
Assi locali piastra N = -36.12 \text{ kN} Ty = 8.15 \text{ kN} \quad My = -31.27 \text{ kN*m} Tz = 9.50 \text{ kN} \quad Mz = -15.63 \text{ kN*m} Per le sollecitazioni di ogni c.c. riferirsi ai risultati dell'analisi strutturale.
[Verifica cls]

[Verifica cls]

[Verifica piastra di base]

[S 275 (Fe 430), Rck 370)

[Verifica cls]
                                 I.R. = 0.59
Verifica cls:
Verifica piastra:
                                                        59 (c.c. 10)
Sigma id = 208.9 N/mm<sup>2</sup>
Verifica piastra: Sigma id = 208.9 N/mm²

[Verifica tirafondo] (S 355 (Fe 510))

Numero 8 tirafondi: Diam. tirafondo = 16 (mm)

Rosetta: Diam. = 68 Spessore = 12 (mm)

Massime forze trasmesse al singolo tirafondo e relative resistenze:

Fvb, Sd = 1.19 kN Ftb, Sd = 43.33 kN

Fvb, Rd = 36.91 kN Ft, Rd = 55.37 kN I.R.

[Verifica nervature]

Numero 8 pervature superiori 1.550
                                                                                                                       I.R. = 0.80
                                                                                                                                                (c.c. 10)
                                                                                                      I.R. = 0.78 (c.c. 10)
| Numero 8 nervature | Sigma = 74.0 N/mm² | I | Saldatura profilo | Saldatura a cordone d'angolo: verificata | Altezza di gola: 7 (mm)
Sigma perp. = 197.4 N/mm<sup>2</sup> I.R. = 0.85
                                                 Tens par. = 4.9 N/mm<sup>2</sup>
[Verifica saldatura nervature superiori]
Alt. gola = 5 (mm) Tens par. = 60.9 N/mm<sup>2</sup>
[Resistenza del nodo]
                                                                            Tens perp. = 83.5 N/mm<sup>2</sup> I.R. = 0.58
Modalità di collasso: nessuna, situazione più gravosa [saldatura colonna-piastra]
Colonna-Fondazione
                       Gruppo = 1 Elemento = 8 Nodo = 15 Cc D=16.83 s=0.8 S 275 (Fe 430)
Colonna:
                    Banca n. 0: Banche generali AMV
Assi locali piastra
N = -35.97 kN
Ty = -12.05 \text{ kN My} = 20.87 \text{ kN*m}
Ty = -12.05 km My = 20.07 km·m

Tz = -7.29 km Mz = 20.18 km·m

Per le sollecitazioni di ogni c.c. riferirsi ai risultati dell'analisi strutturale.

[Verifica piastra di base] (S 275 (Fe 430), Rck 370)

D=360 s=20 Tipologia n. 2 A = 50

[Verifica cls]
                                I.R. = 0.40
                                                        40 (c.c. 1M)
Sigma id = 137.4 N/mm<sup>2</sup>
 Verifica cls:
                                                                                                                        I.R. = 0.52
Verifica piastra: Sigma id = 137.4 N/mm² [Verifica tirafondo] (S 355 (Fe 510))
Numero 8 tirafondi: Diam. tirafondo = 16 (mm)
Rosetta: Diam. = 56 Spessore = 9 (mm)
Massime forze trasmesse al singolo tirafondo e relative resistenze:
Fvb, Sd = 0.91 kN Ftb, Sd = 28.50 kN
Fvb, Rd = 36.91 kN Ft, Rd = 55.37 kN I.R.
 Verifica piastra:
                                                                                                                                               (c.c. 1M)
                                                                                                  I.R. = 0.51 (c.c. 1M)
[Verifica nervature]
Sigma = 53.2 N/mm²

[Verifica saldatura profilo]
Saldatura a cordone d'angolo: verificata
Altezza di gola: 7 (mm)
Sigma perp. = 122.5
Numero 8 nervature superiori: h=150 sp=8 (mm)
Tens par. = 6.3 \text{ N/mm}^2
[Resistenza del nodo]
                                                                             Tens perp. = 55.7 N/mm<sup>2</sup> I.R. = 0.39
Modalità di collasso: nessuna, situazione più gravosa [saldatura colonna-piastra]
Colonna-Fondazione
                       Colonna:
                    Banca n. 0: Banche generali AMV
Tz = -8.28 kN Mz = -21.47 kN*m
Per le sollecitazioni di ogni c.c. riferirsi ai risultati dell'analisi strutturale.

[Verifica piastra di base] (S 275 (Fe 430), Rck 370)

D=360 s=20 Tipologia n. 2 A = 50

[Verifica cls]
[Verifica cls]

Verifica cls: I.R. = 0.47 (c.c. 1M)

Verifica piastra: Sigma id = 159.6 N/mm²

[Verifica tirafondo] (S 355 (Fe 510))

Numero 8 tirafondi: Diam. tirafondo = 16 (mm)

Rosetta: Diam. = 60 Spessore = 10 (mm)

Massime forze trasmesse al singolo tirafondo e relative resistenze:

Fvb,Sd = 1.03 kN

Fvb,Rd = 36.91 kN

Ft,Rd = 55.37 kN

I.R.
                               I.R. = 0.47
                                                                                                                       I.R. = 0.61
                                                                                                                                                (c.c. 1M)
                                                                                                     I.R. = 0.60 (c.c. 1M)
 [Verifica nervature]
Numero 8 nervature superiori: h=150 \text{ sp}=8 \text{ (mm)}
Sigma = 59.0 N/mm<sup>2</sup>
[Verifica saldatura profilo]
Saldatura a cordone d'angolo: verificata Altezza di gola: 7 (mm)
Sigma perp. = 157.6 N/mm² Tens par. :
I.R. = 0.68
                                               Tens par. = 6.8 N/mm<sup>2</sup>
 [Verifica saldatura nervature superiori]
Alt. gola = 5 (mm) Tens par. = 48.3 N/mm<sup>2</sup> [Resistenza del nodo]
                                                                             Tens perp. = 65.9 \text{ N/mm}^2 I.R. = 0.46
Modalità di collasso: nessuna, situazione più gravosa [saldatura colonna-piastra]
Colonna-Fondazione
Colonna: Gruppo = 1 Elemento = 5 Nodo = 9 Cc D=16.83 s=0.8 S 275 (Fe 430)
```

```
[Verifica] Banca n. 0: Banche generali AMV
Assi locali piastra
N = -45.39 \text{ kN}
Ty = -13.39 \text{ kN}

Ty = -11.30 \text{ kN My} = 29.18 \text{ kN*m}

Tz = -9.32 \text{ kN Mz} = 19.56 \text{ kN*m}
Per le sollecitazioni di ogni c.c. riferirsi ai risultati dell'analisi strutturale. [Verifica piastra di base] (S 275 (Fe 430), Rck 370)
D=360 s=20 Tipologia n. 2 A = 50
 [Verifica cls]
                                   I.R. = 0.55
Verifica cls:

Verifica piastra:

Sigma id = 190.6 N/mm²

[Verifica tirafondo] (S 355 (Fe 510))

Numero 8 tirafondi: Diam. tirafondo = 16 (mm)

Rosetta: Diam. = 65 Spessore = 11 (mm)

Massime forze trasmesse al singolo tirafondo e relative resistenze:
                                                                                                                             I.R. = 0.73 (c.c. 1M)
Fvb, Sd = 1.16 kN
Fvb, Rd = 36.91 kN
                                           Ftb, Sd = 39.54 kN
Ft, Rd = 55.37 kN
                                                                                                           I.R. = 0.71 (c.c. 1M)
[Verifica nervature]
Numero 8 nervature superiori: h=150 sp=8 (mm)
Sigma = 69.4 N/mm²
[Verifica saldatura profilo]
Saldatura a cordone d'angolo: verificata
                                                                             I.R. = 0.3
Sigma perp. = 185.1 N/mm<sup>2</sup> Tens par. = 5.9 N/mm<sup>2</sup> I.R. = 0.79
Alt. gola = 5 (mm) Tens par. = 56.9 N/mm<sup>2</sup> Tens perp. = 77.9 N/mm<sup>2</sup> I.R. = 0.54 [Resistenza del nodo]
Modalità di collasso: nessuna, situazione più gravosa [saldatura colonna-piastra]
Colonna-Fondazione
                     Gruppo = 1 Elemento = 7 No
Banca n. 0: Banche generali AMV
                                              Elemento = 7 Nodo = 13 Cc D=16.83 s=0.8 S 275 (Fe 430)
[Verifica]
N = -36.12 kN
Ty = 8.15 kN My = 31.27 kN*m
Tz = -9.50 kN Mz = -15.63 kN*m
Per le sollecitazioni di ogni c.c. riferirsi ai risultati dell'analisi strutturale. [Verifica piastra di base] (S 275 (Fe 430), Rck 370)
D=360 s=20 Tipologia n. 2 A = 50
 [Verifica cls]
                                   I.R. = 0.59
Verifica cls:
Verifica piastra:
Verifica cls: I.R. = 0.59 (c.c. 1M)

Verifica piastra: Sigma id = 208.9 N/mm²

[Verifica tirafondo] (S 355 (Fe 510))

Numero 8 tirafondi: Diam. tirafondo = 16 (mm)

Rosetta: Diam. = 68 Spessore = 12 (mm)

Massime forze trasmesse al singolo tirafondo e relative resistenze:

Fvb, Sd = 1.19 kN Ftb, Sd = 43.33 kN

Fvb, Rd = 36.91 kN Ft, Rd = 55.37 kN I.R.
                                                                                                                             I.R. = 0.80 (c.c. 1M)
                                                                                                           I.R. = 0.78 (c.c. 1M)
[Verifica nervature]
Numero 8 nervature superiori: h=150 sp=8 (mm)
Sigma = 74.0 N/mm² I
[Verifica saldatura profilo]
                                                                             I.R. = 0.3
Saldatura a cordone d'angolo: verificata
Altezza di gola: 7 (mm)
Sigma perp. = 197.4 N/mm² Tens par. = 4.9 N/mm²
I.R. = 0.85
[Werifica saldatura nervature superiori]
Alt. gola = 5 (mm) Tens par. = 60.9 N/mm<sup>2</sup>
[Resistenza del nodo]
                                                                                Tens perp. = 83.5 N/mm<sup>2</sup> I.R. = 0.58
Modalità di collasso: nessuna, situazione più gravosa [saldatura colonna-piastra]
```